4 resultados para polygonal
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We investigate adsorption of helium in nanoscopic polygonal pores at zero temperature using a finite-range density functional theory. The adsorption potential is computed by means of a technique denoted as the elementary source method. We analyze a rhombic pore with Cs walls, where we show the existence of multiple interfacial configurations at some linear densities, which correspond to metastable states. Shape transitions and hysterectic loops appear in patterns which are richer and more complex than in a cylindrical tube with the same transverse area.
Resumo:
Abstract. Endocrine tumors are rarely observed in pigs, and pheochromocytomas have been only punctually described. The current report describes a white and firm, 15-cm in diameter, neoplastic mass located in the adrenal gland with metastasis to regional lymph nodes in a 2.5-year-old sow. The masses had marked desmoplasia that supported a population of polygonal-tospindle– shaped neoplastic cells arranged into cords and packets within a delicate fibrovascular stroma. Immunohistochemical staining of the tumor was positive for chromogranin and negative for neurofilament protein in adrenal and lymph node masses, which was characteristic of a malignant pheochromocytoma.
Resumo:
We've developed a new ambient occlusion technique based on an information-theoretic framework. Essentially, our method computes a weighted visibility from each object polygon to all viewpoints; we then use these visibility values to obtain the information associated with each polygon. So, just as a viewpoint has information about the model's polygons, the polygons gather information on the viewpoints. We therefore have two measures associated with an information channel defined by the set of viewpoints as input and the object's polygons as output, or vice versa. From this polygonal information, we obtain an occlusion map that serves as a classic ambient occlusion technique. Our approach also offers additional applications, including an importance-based viewpoint-selection guide, and a means of enhancing object features and producing nonphotorealistic object visualizations
Resumo:
In this paper we address the problem of extracting representative point samples from polygonal models. The goal of such a sampling algorithm is to find points that are evenly distributed. We propose star-discrepancy as a measure for sampling quality and propose new sampling methods based on global line distributions. We investigate several line generation algorithms including an efficient hardware-based sampling method. Our method contributes to the area of point-based graphics by extracting points that are more evenly distributed than by sampling with current algorithms