15 resultados para peritumoral brain zone
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Understanding the signals that control migration of neural progenitor cells in the adult brain may provide new therapeutic opportunities. Reelin is best known for its role in regulating cell migration during brain development, but we now demonstrate a novel function for reelin in the injured adult brain. First, we show that Reelin is upregulated around lesions. Second, experimentally increasing Reelin expression levels in healthy mouse brain leads to a change in the migratory behavior of subventricular zone-derived progenitors, triggering them to leave the rostral migratory stream (RMS) to which they are normally restricted during their migration to the olfactory bulb. Third, we reveal that Reelin increases endogenous progenitor cell dispersal in periventricular structures independently of any chemoattraction but via cell detachment and chemokinetic action, and thereby potentiates spontaneous cell recruitment to demyelination lesions in the corpus callosum. Conversely, animals lacking Reelin signaling exhibit reduced endogenous progenitor recruitment at the lesion site. Altogether, these results demonstrate that beyond its known role during brain development, Reelin is a key player in post-lesional cell migration in the adult brain. Finally our findings provide proof of concept that allowing progenitors to escape from the RMS is a potential therapeutic approach to promote myelin repair.
Resumo:
This paper measures the degree in stock market integration between five Eastern European countries and the Euro-zone. A potentially gradual transition in correlations is accommodated by smooth transition conditional correlation models. We find that the correlation between stock markets has increased from 2001 to 2007. In particular, the Czech and Polish markets show a higher correlation to the Euro-zone. However, this is not a broad-based phenomenon across Eastern Europe. We also find that the increase in correlations is not a reflection of a world-wide phenomenon of financial integration but appears to be specific to the European market. JEL classifications: C32; C51; F36; G15 Keywords: Multivariate GARCH; Smooth Transition Conditional Correlation; Stock Return Comovement; New EU Members.
Resumo:
Background: Evidence of a role of brain-derived neurotrophic factor (BDNF) in the pathophysiology of eating disorders (ED) has been provided by association studies and by murine models. BDNF plasma levels have been found altered in ED and in psychiatric disorders that show comorbidity with ED. Aims: Since the role of BDNF levels in ED-related psychopathological symptoms has not been tested, we investigatedthe correlation of BDNF plasma levels with the Symptom Checklist 90 Revised (SCL-90R) questionnaire in a total of 78 ED patients. Methods: BDNF levels, measured bythe enzyme-linked immunoassay system, and SCL-90R questionnaire, were assessed in a total of 78 ED patients. The relationship between BDNF levels and SCL-90R scales was calculated using a general linear model. Results: BDNF plasma levels correlated with the Global Severity Index and the Positive Symptom Distress Index global scales and five of the nine subscales in the anorexia nervosa patients. BDNF plasma levels were able to explain, in the case of the Psychoticism subscale, up to 17% of the variability (p = 0.006). Conclusion: Our data suggest that BDNF levels could be involved in the severity of the disease through the modulation of psychopathological traits that are associated with the ED phenotype.
Resumo:
Murine models and association studies in eating disorder (ED) patients have shown a role for the brain-derived neurotrophic factor (BDNF) in eating behavior. Some studies have shown association of BDNF -270C/T single-nucleotide polymorphism (SNP) with bulimia nervosa (BN), while BDNF Val66Met variant has been shown to be associated with both BN and anorexia nervosa (AN). To further test the role of this neurotrophin in humans, we screened 36 SNPs in the BDNF gene and tested for their association with ED and plasma BDNF levels as a quantitative trait. We performed a family-based association study in 106 ED nuclear families and analyzed BDNF blood levels in 110 ED patients and in 50 sib pairs discordant for ED. The rs7124442T/rs11030102C/rs11030119G haplotype was found associated with high BDNF levels (mean BDNF TCG haplotype carriers = 43.6 ng/ml vs. mean others 23.0 ng/ml, P = 0.016) and BN (Z = 2.64; P recessive = 0.008), and the rs7934165A/270T haplotype was associated with AN (Z =-2.64; P additive = 0.008). The comparison of BDNF levels in 50 ED discordant sib pairs showed elevated plasma BDNF levels for the ED group (mean controls = 41.0 vs. mean ED = 52.7; P = 0.004). Our data strongly suggest that altered BDNF levels modulated by BDNF gene variability are associated with the susceptibility to ED, providing physiological evidence that BDNF plays a role in the development of AN and BN, and strongly arguing for its involvement in eating behavior and body weight regulation.
Resumo:
Migration-related issues have, since approximately 2000, been the object of increased attention at the international level. This has led, among other things, to the production of international narratives, which aim both at understanding migration and at proposing policy recommendations on how to address it, with the objective of improving the governance of migration at the global level. But this implies overcoming dilemmas stemming from the diverging interests of states and other actors (like NGOs and the private sector). This article examines the way in which international migration narratives address skilled migration, which is characterised by some of the clearest political trade-offs between stakeholders. It argues that these narratives attempt to speak to all parties and conciliate contradictory arguments about what should be done, in order to discursively overcome policy dilemmas and create a consensus. While this is line with the mandate of international organizations, it depoliticises migration issues.
Resumo:
The earning structure in science is known to be flat relative to the one in the private sector, which could cause a brain drain toward the private sector. In this paper, we assume that agents value both money and fame and study the role of the institution of science in the allocation of talent between the science sector and the private sector. Following works on the Sociology of Science, we model the institution of science as a mechanism distributing fame (i.e. peer recognition). We show that since the intrinsic performance is less noisy signal of talent in the science sector than in the private sector, a good institution of science can mitigate the brain drain. We also find that providing extra monetary incentives through the market might undermine the incentives provided by the institution and thereby worsen the brain drain. Finally, we study the optimal balance between monetary and non-monetary incentives in science.
Resumo:
The earning structure in science is known to be flat relative to the one in theprivate sector, which could cause a brain drain toward the private sector. In thispaper, we assume that agents value both money and fame and study the role ofthe institution of science in the allocation of talent between the science sector andthe private sector. Following works on the Sociology of Science, we model theinstitution of science as a mechanism distributing fame (i.e. peer recognition). Weshow that since the intrinsic performance is less noisy signal of talent in the sciencesector than in the private sector, a good institution of science can mitigate thebrain drain. We also find that providing extra monetary incentives through themarket might undermine the incentives provided by the institution and therebyworsen the brain drain. Finally, we study the optimal balance between monetaryand non-monetary incentives in science.
Resumo:
The work presented evaluates the statistical characteristics of regional bias and expected error in reconstructions of real positron emission tomography (PET) data of human brain fluoro-deoxiglucose (FDG) studies carried out by the maximum likelihood estimator (MLE) method with a robust stopping rule, and compares them with the results of filtered backprojection (FBP) reconstructions and with the method of sieves. The task of evaluating radioisotope uptake in regions-of-interest (ROIs) is investigated. An assessment of bias and variance in uptake measurements is carried out with simulated data. Then, by using three different transition matrices with different degrees of accuracy and a components of variance model for statistical analysis, it is shown that the characteristics obtained from real human FDG brain data are consistent with the results of the simulation studies.
Resumo:
There is no treatment for the neurodegenerative disorder Huntington disease (HD). Cystamine is a candidate drug; however, the mechanisms by which it operates remain unclear. We show here that cystamine increases levels of the heat shock DnaJ-containing protein 1b (HSJ1b) that are low in HD patients. HSJ1b inhibits polyQ-huntingtin¿induced death of striatal neurons and neuronal dysfunction in Caenorhabditis elegans. This neuroprotective effect involves stimulation of the secretory pathway through formation of clathrin-coated vesicles containing brain-derived neurotrophic factor (BDNF). Cystamine increases BDNF secretion from the Golgi region that is blocked by reducing HSJ1b levels or by overexpressing transglutaminase. We demonstrate that cysteamine, the FDA-approved reduced form of cystamine, is neuroprotective in HD mice by increasing BDNF levels in brain. Finally, cysteamine increases serum levels of BDNF in mouse and primate models of HD. Therefore, cysteamine is a potential treatment for HD, and serum BDNF levels can be used as a biomarker for drug efficacy.
Resumo:
Nuclear orphan receptor TLX (NR2E1) functions primarily as a transcriptional repressor and its pivotal role in brain development, glioblastoma, mental retardation and retinopathologies make it an attractive drug target. TLX is expressed in the neural stem cells (NSCs) of the subventricular zone and the hippocampus subgranular zone, regions with persistent neurogenesis in the adult brain, and functions as an essential regulator of NSCs maintenance and self-renewal. Little is known about the TLX social network of interactors and only few TLX coregulators are described. To identify and characterize novel TLX-binders and possible coregulators, we performed yeast-two-hybrid (Y2H) screens of a human adult brain cDNA library using different TLX constructs as baits. Our screens identified multiple clones of Atrophin-1 (ATN1), a previously described TLX interactor. In addition, we identified an interaction with the oncoprotein and zinc finger transcription factor BCL11A (CTIP1/Evi9), a key player in the hematopoietic system and in major blood-related malignancies. This interaction was validated by expression and coimmunoprecipitation in human cells. BCL11A potentiated the transrepressive function of TLX in an in vitro reporter gene assay. Our work suggests that BCL11A is a novel TLX coregulator that might be involved in TLX-dependent gene regulation in the brain.
Resumo:
Background Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI) of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations. Method We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure. Results We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD) patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis. Conclusion CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities between healthy controls and pediatric ADHD.
Resumo:
We formulate a new mixing model to explore hydrological and chemical conditions under which the interface between the stream and catchment interface (SCI) influences the release of reactive solutes into stream water during storms. Physically, the SCI corresponds to the hyporheic/riparian sediments. In the new model this interface is coupled through a bidirectional water exchange to the conventional two components mixing model. Simulations show that the influence of the SCI on stream solute dynamics during storms is detectable when the runoff event is dominated by the infiltrated groundwater component that flows through the SCI before entering the stream and when the flux of solutes released from SCI sediments is similar to, or higher than, the solute flux carried by the groundwater. Dissolved organic carbon (DOC) and nitrate data from two small Mediterranean streams obtained during storms are compared to results from simulations using the new model to discern the circumstances under which the SCI is likely to control the dynamics of reactive solutes in streams. The simulations and the comparisons with empirical data suggest that the new mixing model may be especially appropriate for streams in which the periodic, or persistent, abrupt changes in the level of riparian groundwater exert hydrologic control on flux of biologically reactive fluxes between the riparian/hyporheic compartment and the stream water.
Resumo:
Work-related flow is defined as a sudden and enjoyable merging of action and awareness that represents a peak experience in the daily lives of workers. Employees" perceptions of challenge and skill and their subjective experiences in terms of enjoyment, interest and absorption were measured using the experience sampling method, yielding a total of 6981 observations from a sample of 60 employees. Linear and nonlinear approaches were applied in order to model both continuous and sudden changes. According to the R2, AICc and BIC indexes, the nonlinear dynamical systems model (i.e. cusp catastrophe model) fit the data better than the linear and logistic regression models. Likewise, the cusp catastrophe model appears to be especially powerful for modelling those cases of high levels of flow. Overall, flow represents a nonequilibrium condition that combines continuous and abrupt changes across time. Research and intervention efforts concerned with this process should focus on the variable of challenge, which, according to our study, appears to play a key role in the abrupt changes observed in work-related flow.
Resumo:
Injury to the central nervous system (CNS), including stroke, traumatic brain injury andspinal cord injury, cause devastating and irreversible damage and loss of function. Forexample, stroke affects very large patient populations, results in major suffering for the patients and their relatives, and involves a significant cost to society. CNS damage implies disruption of the intricate internal circuits involved in cognition, the sensory-motor functions, and other important functions. There are currently no treatments available to properly restore such lost functions. New therapeutic proposals will emerge from an understanding of the interdependence of molecular and cellular responses to CNS injury, in particular the inhibitory mechanisms that block regeneration and those that enhanceneuronal plasticity...