117 resultados para negative space
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The number of existing protein sequences spans a very small fraction of sequence space. Natural proteins have overcome a strong negative selective pressure to avoid the formation of insoluble aggregates. Stably folded globular proteins and intrinsically disordered proteins (IDP) use alternative solutions to the aggregation problem. While in globular proteins folding minimizes the access to aggregation prone regions IDPs on average display large exposed contact areas. Here, we introduce the concept of average meta-structure correlation map to analyze sequence space. Using this novel conceptual view we show that representative ensembles of folded and ID proteins show distinct characteristics and responds differently to sequence randomization. By studying the way evolutionary constraints act on IDPs to disable a negative function (aggregation) we might gain insight into the mechanisms by which function - enabling information is encoded in IDPs.
Resumo:
An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) | if uniformly controlled | will quantify contractivity (limit expansivity) of the flow.
Resumo:
We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt".
Resumo:
Report for the scientific sojourn at the Department of Information Technology (INTEC) at the Ghent University, Belgium, from january to june 2007. All-Optical Label Swapping (AOLS) forms a key technology towards the implementation of All-Optical Packet Switching nodes (AOPS) for the future optical Internet. The capital expenditures of the deployment of AOLS increases with the size of the label spaces (i.e. the number of used labels), since a special optical device is needed for each recognized label on every node. Label space sizes are affected by the wayin which demands are routed. For instance, while shortest-path routing leads to the usage of fewer labels but high link utilization, minimum interference routing leads to the opposite. This project studies and proposes All-Optical Label Stacking (AOLStack), which is an extension of the AOLS architecture. AOLStack aims at reducing label spaces while easing the compromise with link utilization. In this project, an Integer Lineal Program is proposed with the objective of analyzing the softening of the aforementioned trade-off due to AOLStack. Furthermore, a heuristic aiming at finding good solutions in polynomial-time is proposed as well. Simulation results show that AOLStack either a) reduces the label spaces with a low increase in the link utilization or, similarly, b) uses better the residual bandwidth to decrease the number of labels even more.
Resumo:
The purpose of this contribution is to draw a picture of the (uneven) distribution of economic activities across the states of the European Union (EU) and the consequences entailed by it. We will briefly summarize the most salient and recent contributions. Then, in the light of the economic geography theory, we will discuss the economic and social advantages and disadvantages associated with a core- periphery structure. In this sense, particular attention will be addressed to the EU financial system of Structural Funds and the effects they produced. Finally, we will formulate some suggestions, relying on the EU experience, that could be of interest to the current Brazilian regional policy.
Resumo:
En aquest treball es tracten qüestions de la geometria integral clàssica a l'espai hiperbòlic i projectiu complex i a l'espai hermític estàndard, els anomenats espais de curvatura holomorfa constant. La geometria integral clàssica estudia, entre d'altres, l'expressió en termes geomètrics de la mesura de plans que tallen un domini convex fixat de l'espai euclidià. Aquesta expressió es dóna en termes de les integrals de curvatura mitja. Un dels resultats principals d'aquest treball expressa la mesura de plans complexos que tallen un domini fixat a l'espai hiperbòlic complex, en termes del que definim com volums intrínsecs hermítics, que generalitzen les integrals de curvatura mitja. Una altra de les preguntes que tracta la geometria integral clàssica és: donat un domini convex i l'espai de plans, com s'expressa la integral de la s-èssima integral de curvatura mitja del convex intersecció entre un pla i el convex fixat? A l'espai euclidià, a l'espai projectiu i hiperbòlic reals, aquesta integral correspon amb la s-èssima integral de curvatura mitja del convex inicial: se satisfà una propietat de reproductibitat, que no es té en els espais de curvatura holomorfa constant. En el treball donem l'expressió explícita de la integral de la curvatura mitja quan integrem sobre l'espai de plans complexos. L'expressem en termes de la integral de curvatura mitja del domini inicial i de la integral de la curvatura normal en una direcció especial: l'obtinguda en aplicar l'estructura complexa al vector normal. La motivació per estudiar els espais de curvatura holomorfa constant i, en particular, l'espai hiperbòlic complex, es troba en l'estudi del següent problema clàssic en geometria. Quin valor pren el quocient entre l'àrea i el perímetre per a successions de figures convexes del pla que creixen tendint a omplir-lo? Fins ara es coneixia el comportament d'aquest quocient en els espais de curvatura seccional negativa i que a l'espai hiperbòlic real les fites obtingudes són òptimes. Aquí provem que a l'espai hiperbòlic complex, les cotes generals no són òptimes i optimitzem la superior.
Resumo:
This paper aims at providing a Bayesian parametric framework to tackle the accessibility problem across space in urban theory. Adopting continuous variables in a probabilistic setting we are able to associate with the distribution density to the Kendall's tau index and replicate the general issues related to the role of proximity in a more general context. In addition, by referring to the Beta and Gamma distribution, we are able to introduce a differentiation feature in each spatial unit without incurring in any a-priori definition of territorial units. We are also providing an empirical application of our theoretical setting to study the density distribution of the population across Massachusetts.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
It has been argued that by truncating the sample space of the negative binomial and of the inverse Gaussian-Poisson mixture models at zero, one is allowed to extend the parameter space of the model. Here that is proved to be the case for the more general three parameter Tweedie-Poisson mixture model. It is also proved that the distributions in the extended part of the parameter space are not the zero truncation of mixed poisson distributions and that, other than for the negative binomial, they are not mixtures of zero truncated Poisson distributions either. By extending the parameter space one can improve the fit when the frequency of one is larger and the right tail is heavier than is allowed by the unextended model. Considering the extended model also allows one to use the basic maximum likelihood based inference tools when parameter estimates fall in the extended part of the parameter space, and hence when the m.l.e. does not exist under the unextended model. This extended truncated Tweedie-Poisson model is proved to be useful in the analysis of words and species frequency count data.
Resumo:
Hem establert les bases metodològiques i teòriques per investigar la pregunta “Tenen les nacions sense estat el dret de controlar el seu propi espai de comunicació?”. La investigació ajusta el concepte d’espai de comunicació a la teoria política, cercant els seus límits en els drets individuals i, des de la perspectiva del liberalisme 2, aportant la justificació del seu control en quant que plataforma que incideix en la conservació i supervivència d’una cultura nacional. El primer article i fase de la tesi és l’adaptació i definició del concepte espai de comunicació. Fins ara, la recerca ha proposat diferents models d’espai de comunicació entenent si es tracta d’una visió emfatitzant la distribució i la producció de material marcat amb els símbols de la identitat nacional de la societat emissora, o bé si emfatitza la idea d’un espai de circulació de fluxos comunicatiu ajustat a un territori tradicionalment vinculat a una identitat nacional o nació sense estat. Igualment, es distingeix la dimensió d’emissió –sortir del territori al món- i la de recepció –fluxos informatius rebuts des del món al territori, concretament, al ciutadà; el paper d’intervenció de les institucions democràtiques és diferent en una dimensió o una altra i, per tant, també són diferents els drets afectats i les teories o principis que neguen o justifiquen el control de l’espai de comunicació. També s’ha indagat en les teories sobre els efectes cognitius dels mitjans de comunicació per relacionar-los amb la construcció nacional com a cohesió simbòlica i cultural. Si bé els mitjans no poden fer canviar de pensament immediatament, sí que poden conformar a llarg termini una percepció nacional general. Una comunitat és imaginada, donada la distància física dels seus components, i la comunicació social és, juntament amb l’educació, el principal factor de construcció nacional, avui en dia.
Gaussian estimates for the density of the non-linear stochastic heat equation in any space dimension
Resumo:
In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.