35 resultados para mutant mouse

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor (PAC1) is a G-protein-coupled receptor binding the strongly conserved neuropeptide PACAP with 1000-fold higher affinity than the related peptide vasoactive intestinal peptide. PAC1-mediated signaling has been implicated in neuronal differentiation and synaptic plasticity. To gain further insight into the biological significance of PAC1-mediated signaling in vivo, we generated two different mutant mouse strains, harboring either a complete or a forebrain-specific inactivation of PAC1. Mutants from both strains show a deficit in contextual fear conditioning, a hippocampus-dependent associative learning paradigm. In sharp contrast, amygdala-dependent cued fear conditioning remains intact. Interestingly, no deficits in other hippocampus-dependent tasks modeling declarative learning such as the Morris water maze or the social transmission of food preference are observed. At the cellular level, the deficit in hippocampus-dependent associative learning is accompanied by an impairment of mossy fiber long-term potentiation (LTP). Because the hippocampal expression of PAC1 is restricted to mossy fiber terminals, we conclude that presynaptic PAC1-mediated signaling at the mossy fiber synapse is involved in both LTP and hippocampus-dependent associative learning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Brain-Derived Neurotrophic Factor (BDNF) is the main candidate for neuroprotective therapy for Huntington's disease (HD), but its conditional administration is one of its most challenging problems. Results Here we used transgenic mice that over-express BDNF under the control of the Glial Fibrillary Acidic Protein (GFAP) promoter (pGFAP-BDNF mice) to test whether up-regulation and release of BDNF, dependent on astrogliosis, could be protective in HD. Thus, we cross-mated pGFAP-BDNF mice with R6/2 mice to generate a double-mutant mouse with mutant huntingtin protein and with a conditional over-expression of BDNF, only under pathological conditions. In these R6/2:pGFAP-BDNF animals, the decrease in striatal BDNF levels induced by mutant huntingtin was prevented in comparison to R6/2 animals at 12 weeks of age. The recovery of the neurotrophin levels in R6/2:pGFAP-BDNF mice correlated with an improvement in several motor coordination tasks and with a significant delay in anxiety and clasping alterations. Therefore, we next examined a possible improvement in cortico-striatal connectivity in R62:pGFAP-BDNF mice. Interestingly, we found that the over-expression of BDNF prevented the decrease of cortico-striatal presynaptic (VGLUT1) and postsynaptic (PSD-95) markers in the R6/2:pGFAP-BDNF striatum. Electrophysiological studies also showed that basal synaptic transmission and synaptic fatigue both improved in R6/2:pGAP-BDNF mice. Conclusions These results indicate that the conditional administration of BDNF under the GFAP promoter could become a therapeutic strategy for HD due to its positive effects on synaptic plasticity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological consequences of constitutive fibroblast growth factor-4 (fgf4) expression have been analysed during anterior CNS development of mouse chimeric embryos. Severe mutant embryos exhibit exencephaly, absence of eye development and anomalous differentiation of neuropithelium. These embryos also show ectopic limb buds resembling the early phases of limb development. Because our results show that anterior CNS in those chimeric embrios does not express shh ectopically, we suggest that malformations may be due to interference between the ectopic expression of fgf4 in the cephalic area and the receptors for the members of the FGF family that regulate brain and eye development, namely fgf8. If this is correct, the results indirectly suport the crucial role of fgf8 in patterning the anterior CNS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Huntington's disease (HD) is an inherited neurodegenerative disorder triggered by an expanded polyglutamine tract in huntingtin that is thought to confer a new conformational property on this large protein. The propensity of small amino-terminal fragments with mutant, but not wild-type, glutamine tracts to self-aggregate is consistent with an altered conformation but such fragments occur relatively late in the disease process in human patients and mouse models expressing full-length mutant protein. This suggests that the altered conformational property may act within the full-length mutant huntingtin to initially trigger pathogenesis. Indeed, genotypephenotype studies in HD have defined genetic criteria for the disease initiating mechanism, and these are all fulfilled by phenotypes associated with expression of full-length mutant huntingtin, but not amino-terminal fragment, in mouse models. As the in vitro aggregation of amino-terminal mutant huntingtin fragment offers a ready assay to identify small compounds that interfere with the conformation of the polyglutamine tract, we have identified a number of aggregation inhibitors, and tested whether these are also capable of reversing a phenotype caused by endogenous expressionof mutant huntingtin in a striatal cell line from the HdhQ111/Q111 knock-in mouse. Results: We screened the NINDS Custom Collection of 1,040 FDA approved drugs and bioactive compounds for their ability to prevent in vitro aggregation of Q58-htn 1¿171 amino terminal fragment. Ten compounds were identified that inhibited aggregation with IC50 < 15 ¿M, including gossypol, gambogic acid, juglone, celastrol, sanguinarine and anthralin. Of these, both juglone and celastrol were effective in reversing the abnormal cellular localization of full-length mutant huntingtin observed in mutant HdhQ111/Q111 striatal cells. Conclusions: At least some compounds identified as aggregation inhibitors also prevent a neuronal cellular phenotype caused by full-length mutant huntingtin, suggesting that in vitro fragment aggregation can act as a proxy for monitoring the disease-producing conformational property in HD. Thus, identification and testing of compounds that alter in vitro aggregation is a viable approach for defining potential therapeutic compounds that may act on the deleterious conformational property of full-length mutant huntingtin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we studied the toxicity in clams from the Gulf of Gabes, Tunisia (Southern Mediterranean). Samples from two stations (M2 and S6) were collected monthly from January 2009 to September 2010, and analyzed by the official control method of mousse bioassay (MBA) for lipophilic toxins. All samples were also analyzed with the LC-MS/MS method for the determination of lipophilic toxins, namely: okadaic acid group, pectenotoxins, yessotoxins and azaspiracids, spirolides and gymnodimines (GYMs). The results showed prevalence of GYMs since it was the only toxin group identified in these samples with a maximum of 2,136 μg GYM -A kg-1 (February 2009 at M2). Furthermore, GYMs showed persistence in the area, with only one blank sample below the limit of detection. Interestingly, this blank sample was found in June 2009 after an important toxic episode which supports the recent findings regarding the high detoxification capability of clams, much faster than that reported for oysters. In comparison, good agreement was found among MBA, the LD50 value of 80-100 μg kg-1 reported for GYM- A, and quantitative results provided by LC-MS/MS. On the contrary to that previously reported for Tunisian clams, we unambiguously identified and quantified by LC-MS/MS the isomers GYM- B/C in most samples. Phytoplankton identification and enumeration of Karenia selliformis usually showed higher densities at site M2 than S6 as expected bearing in mind toxin results, although additional results would be required to improve the correlation between K. selliformis densities and quantitative results of toxins. The prevalence and persistence of GYMs in this area at high levels strongly encourages the evaluation of the chronic toxic effects of GYMs. This is especially important taking into account that relatively large quantities of GYMs can be released into the market due to the replacement of the official control method from mouse bioassay to the LC-MS/MS for lipophilic toxins (Regulation (EU) No 15/2011), and the lack of Regulation for this group of toxins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The completion of the sequencing of the mouse genome promises to help predict human genes with greater accuracy. While current ab initio gene prediction programs are remarkably sensitive (i.e., they predict at least a fragment of most genes), their specificity is often low, predicting a large number of false-positive genes in the human genome. Sequence conservation at the protein level with the mouse genome can help eliminate some of those false positives. Here we describe SGP2, a gene prediction program that combines ab initio gene prediction with TBLASTX searches between two genome sequences to provide both sensitive and specific gene predictions. The accuracy of SGP2 when used to predict genes by comparing the human and mouse genomes is assessed on a number of data sets, including single-gene data sets, the highly curated human chromosome 22 predictions, and entire genome predictions from ENSEMBL. Results indicate that SGP2 outperforms purely ab initio gene prediction methods. Results also indicate that SGP2 works about as well with 3x shotgun data as it does with fully assembled genomes. SGP2 provides a high enough specificity that its predictions can be experimentally verified at a reasonable cost. SGP2 was used to generate a complete set of gene predictions on both the human and mouse by comparing the genomes of these two species. Our results suggest that another few thousand human and mouse genes currently not in ENSEMBL are worth verifying experimentally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anx/anx mouse displays poor appetite and lean appearance and is considered a good model for the study of anorexia nervosa. To identify new genes involved in feeding behavior and body weight regulation we performed an expression profiling in the hypothalamus of the anx/anx mice. Using commercial microarrays we detected 156 differentially expressed genes and validated 92 of those using TaqMan low-density arrays. The expression of a set of 87 candidate genes selected based on literature evidences was also quantified by TaqMan low-density arrays. Our results showed enrichment in deregulated genes involved in cell death, cell morphology and cancer as well as an alteration of several signaling circuits involved in energy balance including neuropeptide Y and melanocortin signaling. The expression profile along with the phenotype led us to conclude that anx/anx mice resemble the anorexia-cachexia syndrome typically observed in cancer, infection with human immunodeficiency virus or chronic diseases, rather than starvation, and that anx/anx mice could be considered a good model for the treatment and investigation of this condition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous pharmacological studies have indicated the possible existence of functional interactions between μ-, δ- and κ-opioid receptors in the CNS. We have investigated this issue using a genetic approach. Here we describe in vitro and in vivo functional activity of δ- and κ-opioid receptors in mice lacking the μ-opioid receptor (MOR). Measurements of agonist-induced [35S]GTPγS binding and adenylyl cyclase inhibition showed that functional coupling of δ- and κ-receptors to G-proteins is preserved in the brain of mutant mice. In the mouse vas deferens bioassay, deltorphin II and cyclic[d-penicillamine2,d-penicillamine5] enkephalin exhibited similar potency to inhibit smooth muscle contraction in both wild-type and MOR −/− mice. δ-Analgesia induced by deltorphin II was slightly diminished in mutant mice, when the tail flick test was used. Deltorphin II strongly reduced the respiratory frequency in wild-type mice but not in MOR −/− mice. Analgesic and respiratory responses produced by the selective κ-agonist U-50,488H were unchanged in MOR-deficient mice. In conclusion, the preservation of δ- and κ-receptor signaling properties in mice lacking μ-receptors provides no evidence for opioid receptor cross-talk at the cellular level. Intact antinociceptive and respiratory responses to the κ-agonist further suggest that the κ-receptor mainly acts independently from the μ-receptor in vivo. Reduced δ-analgesia and the absence of δ-respiratory depression in MOR-deficient mice together indicate that functional interactions may take place between μ-receptors and central δ-receptors in specific neuronal pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induced pluripotent stem (iPS) cells have generated keen interestdue to their potential use in regenerative medicine. They havebeen obtained from various cell types of both mice and humans byexogenous delivery of different combinations of Oct4, Sox2, Klf4,c-Myc, Nanog, and Lin28. The delivery of these transcription factorshas mostly entailed the use of integrating viral vectors (retrovirusesor lentiviruses), carrying the risk of both insertional mutagenesisand oncogenesis due to misexpression of these exogenousfactors. Therefore, obtaining iPS cells that do not carry integratedtransgene sequences is an important prerequisite for their eventualtherapeutic use. Here we report the generation of iPS cell linesfrom mouse embryonic fibroblasts with no evidence of integrationof the reprogramming vector in their genome, achieved by nucleofectionof a polycistronic construct coexpressing Oct4, Sox2, Klf4,and c-Myc

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Prionopathies are characterized by spongiform brain degeneration, myoclonia, dementia, and periodic electroencephalographic (EEG) disturbances. The hallmark of prioniopathies is the presence of an abnormal conformational isoform (PrP(sc)) of the natural cellular prion protein (PrP(c)) encoded by the Prnp gene. Although several roles have been attributed to PrP(c), its putative functions in neuronal excitability are unknown. Although early studies of the behavior of Prnp knockout mice described minor changes, later studies report altered behavior. To date, most functional PrP(c) studies on synaptic plasticity have been performed in vitro. To our knowledge, only one electrophysiological study has been performed in vivo in anesthetized mice, by Curtis and coworkers. They reported no significant differences in paired-pulse facilitation or LTP in the CA1 region after Schaffer collateral/commissural pathway stimulation. Principal Findings: Here we explore the role of PrP(c) expression in neurotransmission and neural excitability using wild-type, Prnp -/- and PrP(c)-overexpressing mice (Tg20 strain). By correlating histopathology with electrophysiology in living behaving mice, we demonstrate that both Prnp -/- mice but, more relevantly Tg20 mice show increased susceptibility to KA, leading to significant cell death in the hippocampus. This finding correlates with enhanced synaptic facilitation in paired-pulse experiments and hippocampal LTP in living behaving mutant mice. Gene expression profiling using Illumina microarrays and Ingenuity pathways analysis showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission were co-regulated in Prnp -/- and Tg20 mice. Lastly, RT-qPCR of neurotransmission-related genes indicated that subunits of GABA(A) and AMPA-kainate receptors are co-regulated in both Prnp -/- and Tg20 mice. Conclusions/Significance: Present results demonstrate that PrP(c) is necessary for the proper homeostatic functioning of hippocampal circuits, because of its relationships with GABA(A) and AMPA-Kainate neurotransmission. New PrP(c) functions have recently been described, which point to PrP(c) as a target for putative therapies in Alzheimer's disease. However, our results indicate that a "gain of function" strategy in Alzheimer's disease, or a "loss of function" in prionopathies, may impair PrP(c) function, with devastating effects. In conclusion, we believe that present data should be taken into account in the development of future therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Huntingtin regulates post-Golgi trafficking of secreted proteins. Here, we studied the mechanism by which mutant huntingtin impairs this process. Colocalization studies and Western blot analysis of isolated Golgi membranes showed a reduction of huntingtin in the Golgi apparatus of cells expressing mutant huntingtin. These findings correlated with a decrease in the levels of optineurin and Rab8 in the Golgi apparatus that can be reverted by overexpression of full-length wild-type huntingtin. In addition, immunoprecipitation studies showed reduced interaction between mutant huntingtin and optineurin/Rab8. Cells expressing mutant huntingtin produced both an accumulation of clathrin adaptor complex 1 at the Golgi and an increase of clathrin-coated vesicles in the vicinity of Golgi cisternae as revealed by electron microscopy. Furthermore, inverse fluorescence recovery after photobleaching analysis for lysosomal-associated membrane protein-1 and mannose-6-phosphate receptor showed that the optineurin/Rab8-dependent post-Golgi trafficking to lysosomes was impaired in cells expressing mutant huntingtin or reducing huntingtin levels by small interfering RNA. Accordingly, these cells showed a lower content of cathepsin D in lysosomes, which led to an overall reduction of lysosomal activity. Together, our results indicate that mutant huntingtin perturbs post-Golgi trafficking to lysosomal compartments by delocalizing the optineurin/Rab8 complex, which, in turn, affects the lysosomal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. The aim of this study was to identify new surfactants with low skin irritant properties for use in pharmaceutical and cosmetic formulations, employing cell culture as an alternative method to in vivo testing. In addition, we sought to establish whether potential cytotoxic properties were related to the size of the counterions bound to the surfactants. Methods. Cytotoxicity was assessed in the mouse fibroblast cell line 3T6, and the human keratinocyte cell line NCTC 2544, using the MTT assay and uptake of the vital dye neutral red 24 h after dosing (NRU). Results. Lysine-derivative surfactants showed higher IC50s than did commercial anionic irritant compounds such as sodium dodecyl sulphate, proving to be no more harmful than amphoteric betaines. The aggressiveness of the surfactants depended upon the size of their constituent counterions: surfactants associated with lighter counterions showed a proportionally higher aggressivity than those with heavier ones. Conclusions. Synthetic lysine-derivative anionic surfactants are less irritant than commercial surfactants such as sodium dodecyl sulphate and Hexadecyltrimethylammonium bromide and are similar to Betaines. These surfactants may offer promising applications in pharmaceutical and cosmetic preparations, representing a potential alternative to commercial anionic surfactants as a result of their low irritancy potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reelin gene encodes an extracellular protein that is crucial for neuronal migration in laminated brain regions. To gain insights into the functions of Reelin, we performed high-resolution in situ hybridization analyses to determine the pattern of reelin expression in the developing forebrain of the mouse. We also performed double-labeling studies with several markers, including calcium-binding proteins, GAD65/67, and neuropeptides, to characterize the neuronal subsets that express reelin transcripts. reelinexpression was detected at embryonic day 10 and later in the forebrain, with a distribution that is consistent with the prosomeric model of forebrain regionalization. In the diencephalon, expression was restricted to transverse and longitudinal domains that delineated boundaries between neuromeres. During embryogenesis,reelin was detected in the cerebral cortex in Cajal-Retzius cells but not in the GABAergic neurons of layer I. At prenatal stages, reelin was also expressed in the olfactory bulb, and striatum and in restricted nuclei in the ventral telencephalon, hypothalamus, thalamus, and pretectum. At postnatal stages, reelin transcripts gradually disappeared from Cajal-Retzius cells, at the same time as they appeared in subsets of GABAergic neurons distributed throughout neocortical and hippocampal layers. In other telencephalic and diencephalic regions,reelin expression decreased steadily during the postnatal period. In the adult, there was prominent expression in the olfactory bulb and cerebral cortex, where it was restricted to subsets of GABAergic interneurons that co-expressed calbindin, calretinin, neuropeptide Y, and somatostatin. This complex pattern of cellular and regional expression is consistent with Reelin having multiple roles in brain development and adult brain function.