10 resultados para motility

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Caveolins are a crucial component of caveolae but have also been localized to the Golgi complex, and, under some experimental conditions, to lipid bodies (LBs). The physiological relevance and dynamics of LB association remain unclear. We now show that endogenous caveolin-1 and caveolin-2 redistribute to LBs in lipid loaded A431 and FRT cells. Association with LBs is regulated and reversible; removal of fatty acids causes caveolin to rapidly leave the lipid body. We also show by subcellular fractionation, light and electron microscopy that during the first hours of liver regeneration, caveolins show a dramatic redistribution from the cell surface to the newly formed LBs. At later stages of the regeneration process (when LBs are still abundant), the levels of caveolins in LBs decrease dramatically. As a model system to study association of caveolins with LBs we have used brefeldin A (BFA). BFA causes rapid redistribution of endogenous caveolins to LBs and this association was reversed upon BFA washout. Finally, we have used a dominant negative LB-associated caveolin mutant (cavDGV) to study LB formation and to examine its effect on LB function. We now show that the cavDGV mutant inhibits microtubule-dependent LB motility and blocks the reversal of lipid accumulation in LBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell motility is an essential process that depends on a coherent, cross-linked actin cytoskeleton that physically coordinates the actions of numerous structural and signaling molecules. The actin cross-linking protein, filamin (Fln), has been implicated in the support of three-dimensional cortical actin networks capable of both maintaining cellular integrity and withstanding large forces. Although numerous studies have examined cells lacking one of the multiple Fln isoforms, compensatory mechanisms can mask novel phenotypes only observable by further Fln depletion. Indeed, shRNA-mediated knockdown of FlnA in FlnB¿/¿ mouse embryonic fibroblasts (MEFs) causes a novel endoplasmic spreading deficiency as detected by endoplasmic reticulum markers. Microtubule (MT) extension rates are also decreased but not by peripheral actin flow, because this is also decreased in the Fln-depleted system. Additionally, Fln-depleted MEFs exhibit decreased adhesion stability that appears in increased ruffling of the cell edge, reduced adhesion size, transient traction forces, and decreased stress fibers. FlnA¿/¿ MEFs, but not FlnB¿/¿ MEFs, also show a moderate defect in endoplasm spreading, characterized by initial extension followed by abrupt retractions and stress fiber fracture. FlnA localizes to actin linkages surrounding the endoplasm, adhesions, and stress fibers. Thus we suggest that Flns have a major role in the maintenance of actin-based mechanical linkages that enable endoplasmic spreading and MT extension as well as sustained traction forces and mature focal adhesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND--Oesophageal motor abnormalities have been reported in alcoholism. AIM--To investigate the effects of chronic alcoholism and its withdrawal on oesophageal disease. PATIENTS--23 chronic alcoholic patients (20 men and three women; mean age 43, range 23 to 54). METHODS--Endoscopy, manometry, and 24 hour pH monitoring 7-10 days and six months after ethanol withdrawal. Tests for autonomic and peripheral neuropathy were also performed. Motility and pH tracings were compared with those of age and sex matched control groups: healthy volunteers, nutcracker oesophagus, and gastro-oesophageal reflux disease. RESULTS--14 (61%) alcoholic patients had reflux symptoms, and endoscopy with biopsy showed oesophageal inflammation in 10 patients. One patient had an asymptomatic squamous cell carcinoma. Oesophageal motility studies in the alcoholic patients showed that peristaltic amplitude in the middle third was > 150 mm Hg (95th percentile (P95) of healthy controls) in 13 (57%), the ratio lower/ middle amplitude was < 0.9 in 15 (65%) (> 0.9 in all control groups), and the lower oesophageal sphincter was hypertensive (> 23.4 mm Hg, P95 of healthy controls) in 13 (57%). All three abnormalities were present in five (22%). Abnormal reflux (per cent reflux time > 2.9, P95 of healthy controls) was shown in 12 (52%) alcoholic patients, and was unrelated to peristaltic dysfunction. Subclinical neuropathy in 10 patients did not effect oesophageal abnormalities. Oesophageal motility abnormalities persisted at six months in six patients with ongoing alcoholism, whereas they reverted towards normal in 13 who remained abstinent; reflux, however, was unaffected. CONCLUSIONS--Oesophageal peristaltic dysfunction and reflux are frequent in alcoholism. High amplitude contractions in the middle third of the oesophagus seem to be a marker of excessive alcohol consumption, and tend to improve with abstinence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND--Oesophageal motor abnormalities have been reported in alcoholism. AIM--To investigate the effects of chronic alcoholism and its withdrawal on oesophageal disease. PATIENTS--23 chronic alcoholic patients (20 men and three women; mean age 43, range 23 to 54). METHODS--Endoscopy, manometry, and 24 hour pH monitoring 7-10 days and six months after ethanol withdrawal. Tests for autonomic and peripheral neuropathy were also performed. Motility and pH tracings were compared with those of age and sex matched control groups: healthy volunteers, nutcracker oesophagus, and gastro-oesophageal reflux disease. RESULTS--14 (61%) alcoholic patients had reflux symptoms, and endoscopy with biopsy showed oesophageal inflammation in 10 patients. One patient had an asymptomatic squamous cell carcinoma. Oesophageal motility studies in the alcoholic patients showed that peristaltic amplitude in the middle third was > 150 mm Hg (95th percentile (P95) of healthy controls) in 13 (57%), the ratio lower/ middle amplitude was < 0.9 in 15 (65%) (> 0.9 in all control groups), and the lower oesophageal sphincter was hypertensive (> 23.4 mm Hg, P95 of healthy controls) in 13 (57%). All three abnormalities were present in five (22%). Abnormal reflux (per cent reflux time > 2.9, P95 of healthy controls) was shown in 12 (52%) alcoholic patients, and was unrelated to peristaltic dysfunction. Subclinical neuropathy in 10 patients did not effect oesophageal abnormalities. Oesophageal motility abnormalities persisted at six months in six patients with ongoing alcoholism, whereas they reverted towards normal in 13 who remained abstinent; reflux, however, was unaffected. CONCLUSIONS--Oesophageal peristaltic dysfunction and reflux are frequent in alcoholism. High amplitude contractions in the middle third of the oesophagus seem to be a marker of excessive alcohol consumption, and tend to improve with abstinence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell motility is an essential process that depends on a coherent, cross-linked actin cytoskeleton that physically coordinates the actions of numerous structural and signaling molecules. The actin cross-linking protein, filamin (Fln), has been implicated in the support of three-dimensional cortical actin networks capable of both maintaining cellular integrity and withstanding large forces. Although numerous studies have examined cells lacking one of the multiple Fln isoforms, compensatory mechanisms can mask novel phenotypes only observable by further Fln depletion. Indeed, shRNA-mediated knockdown of FlnA in FlnB¿/¿ mouse embryonic fibroblasts (MEFs) causes a novel endoplasmic spreading deficiency as detected by endoplasmic reticulum markers. Microtubule (MT) extension rates are also decreased but not by peripheral actin flow, because this is also decreased in the Fln-depleted system. Additionally, Fln-depleted MEFs exhibit decreased adhesion stability that appears in increased ruffling of the cell edge, reduced adhesion size, transient traction forces, and decreased stress fibers. FlnA¿/¿ MEFs, but not FlnB¿/¿ MEFs, also show a moderate defect in endoplasm spreading, characterized by initial extension followed by abrupt retractions and stress fiber fracture. FlnA localizes to actin linkages surrounding the endoplasm, adhesions, and stress fibers. Thus we suggest that Flns have a major role in the maintenance of actin-based mechanical linkages that enable endoplasmic spreading and MT extension as well as sustained traction forces and mature focal adhesions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the phenomenon of hydrodynamic-induced cooperativity for pairs of flagellated micro-organism swimmers, of which spermatozoa cells are an example. We consider semiflexible swimmers, where inextensible filaments are driven by an internal intrinsic force and torque-free mechanism (intrinsic swimmers). The velocity gain for swimming cooperatively, which depends on both the geometry and the driving, develops as a result of the near-field coupling of bending and hydrodynamic stresses. We identify the regimes where hydrodynamic cooperativity is advantageous and quantify the change in efficiency. When the filaments' axes are parallel, hydrodynamic interaction induces a directional instability that causes semiflexible swimmers that profit from swimming together to move apart from each other. Biologically, this implies that flagella need to select different synchronized collective states and to compensate for directional instabilities (e.g., by binding) in order to profit from swimming together. By analyzing the cooperative motion of pairs of externally actuated filaments, we assess the impact that stress distribution along the filaments has on their collective displacements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The bacterial flagellum is the most important organelle of motility in bacteria and plays a key role in many bacterial lifestyles, including virulence. The flagellum also provides a paradigm of how hierarchical gene regulation, intricate protein-protein interactions and controlled protein secretion can result in the assembly of a complex multi-protein structure tightly orchestrated in time and space. As if to stress its importance, plants and animals produce receptors specifically dedicated to the recognition of flagella. Aside from motility, the flagellum also moonlights as an adhesion and has been adapted by humans as a tool for peptide display. Flagellar sequence variation constitutes a marker with widespread potential uses for studies of population genetics and phylogeny of bacterial species. RESULTS: We sequenced the complete flagellin gene (flaA) in 18 different species and subspecies of Aeromonas. Sequences ranged in size from 870 (A. allosaccharophila) to 921 nucleotides (A. popoffii). The multiple alignment displayed 924 sites, 66 of which presented alignment gaps. The phylogenetic tree revealed the existence of two groups of species exhibiting different FlaA flagellins (FlaA1 and FlaA2). Maximum likelihood models of codon substitution were used to analyze flaA sequences. Likelihood ratio tests suggested a low variation in selective pressure among lineages, with an omega ratio of less than 1 indicating the presence of purifying selection in almost all cases. Only one site under potential diversifying selection was identified (isoleucine in position 179). However, 17 amino acid positions were inferred as sites that are likely to be under positive selection using the branch-site model. Ancestral reconstruction revealed that these 17 amino acids were among the amino acid changes detected in the ancestral sequence. CONCLUSION: The models applied to our set of sequences allowed us to determine the possible evolutionary pathway followed by the flaA gene in Aeromonas, suggesting that this gene have probably been evolving independently in the two groups of Aeromonas species since the divergence of a distant common ancestor after one or several episodes of positive selection. REVIEWERS: This article was reviewed by Alexey Kondrashov, John Logsdon and Olivier Tenaillon (nominated by Laurence D Hurst).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamentos: Con la edad avanzada se producen cambios en la microflora intestinal que pueden afectar al estado de salud general. En este trabajo analizamos el efecto de Lactobacillus plantarum CECT 7315/7316 sobre la regulación del tránsito intestinal y el estado nutricional. Métodos: Hemos realizado un estudio clínico dobleciego, controlado por placebo y aleatorizado. Hemos evaluado la evolución de la frecuencia de defecación semanal y los niveles en sangre de proteínas totales, albúmina,colesterol y proteína C-reactiva. Resultados: Lactobacillus plantarum CECT 7315/7316 ayuda a regular el tránsito intestinal y mejora el estado nutricional en personas mayores. Conclusiones: El consumo de productos funcionales que contengan L. plantarum CECT 7315/7316 mejora la calidad de vida de personas de la tercera edad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib), an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII) plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM) and interference reflection microscopy (IRM) revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polar flagellin proteins from Aeromonas hydrophila strain AH-3 (serotype O34) were found to be O-glycosylated with a heterogeneous glycan. Mutants unable to produce WecP or Gne enzymes showed altered motility, and the study of their polar flagellin glycosylation showed that the patterns of glycosylation differed from that observed with wild type polar flagellin. This suggested the involvement of a lipid carrier in glycosylation. A gene coding for an enzyme linking sugar to a lipid carrier was identified in strain AH-3 (WecX) and subsequent mutation abolished completely motility, flagella production by EM, and flagellin glycosylation. This is the first report of a lipid carrier involved in flagella O-glycosylation. A molecular model has been proposed. The results obtained suggested that the N-acetylhexosamines are N-acetylgalactosamines and that the heptasaccharide is completely independent of the O34-antigen lipopolysaccharide. Furthermore, by comparing the mutants with differing degrees of polar flagellin glycosylation, we established their importance in A. hydrophila flagella formation and motility.