117 resultados para momentum dissipation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial–boundary value problem. This simplification requires the performance of the polar (modulus–argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.
Resumo:
The long-term mean properties of the global climate system and those of turbulent fluid systems are reviewed from a thermodynamic viewpoint. Two general expressions are derived for a rate of entropy production due to thermal and viscous dissipation (turbulent dissipation) in a fluid system. It is shown with these expressions that maximum entropy production in the Earth s climate system suggested by Paltridge, as well as maximum transport properties of heat or momentum in a turbulent system suggested by Malkus and Busse, correspond to a state in which the rate of entropy production due to the turbulent dissipation is at a maximum. Entropy production due to absorption of solar radiation in the climate system is found to be irrelevant to the maximized properties associated with turbulence. The hypothesis of maximum entropy production also seems to be applicable to the planetary atmospheres of Mars and Titan and perhaps to mantle convection. Lorenz s conjecture on maximum generation of available potential energy is shown to be akin to this hypothesis with a few minor approximations. A possible mechanism by which turbulent fluid systems adjust themselves to the states of maximum entropy production is presented as a selffeedback mechanism for the generation of available potential energy. These results tend to support the hypothesis of maximum entropy production that underlies a wide variety of nonlinear fluid systems, including our planet as well as other planets and stars
Resumo:
This work presents an analysis of hysteresis and dissipation in quasistatically driven disordered systems. The study is based on the random field Ising model with fluctuationless dynamics. It enables us to sort out the fraction of the energy input by the driving field stored in the system and the fraction dissipated in every step of the transformation. The dissipation is directly related to the occurrence of avalanches, and does not scale with the size of Barkhausen magnetization jumps. In addition, the change in magnetic field between avalanches provides a measure of the energy barriers between consecutive metastable states
Resumo:
A simple method is presented to evaluate the effects of short-range correlations on the momentum distribution of nucleons in nuclear matter within the framework of the Greens function approach. The method provides a very efficient representation of the single-particle Greens function for a correlated system. The reliability of this method is established by comparing its results to those obtained in more elaborate calculations. The sensitivity of the momentum distribution on the nucleon-nucleon interaction and the nuclear density is studied. The momentum distributions of nucleons in finite nuclei are derived from those in nuclear matter using a local-density approximation. These results are compared to those obtained directly for light nuclei like 16O.
Resumo:
The cross section for the removal of high-momentum protons from 16O is calculated for high missing energies. The admixture of high-momentum nucleons in the 16O ground state is obtained by calculating the single-hole spectral function directly in the finite nucleus with the inclusion of short-range and tensor correlations induced by a realistic meson-exchange interaction. The presence of high-momentum nucleons in the transition to final states in 15N at 60¿100 MeV missing energy is converted to the coincidence cross section for the (e,e¿p) reaction by including the coupling to the electromagnetic probe and the final state interactions of the outgoing proton in the same way as in the standard analysis of the experimental data. Detectable cross sections for the removal of a single proton at these high missing energies are obtained which are considerably larger at higher missing momentum than the corresponding cross sections for the p-wave quasihole transitions. Cross sections for these quasihole transitions are compared with the most recent experimental data available.
Resumo:
The influence of hole-hole (h-h) propagation in addition to the conventional particle-particle (p-p) propagation, on the energy per particle and the momentum distribution is investigated for the v2 central interaction which is derived from Reid¿s soft-core potential. The results are compared to Brueckner-Hartree-Fock calculations with a continuous choice for the single-particle (SP) spectrum. Calculation of the energy from a self-consistently determined SP spectrum leads to a lower saturation density. This result is not corroborated by calculating the energy from the hole spectral function, which is, however, not self-consistent. A generalization of previous calculations of the momentum distribution, based on a Goldstone diagram expansion, is introduced that allows the inclusion of h-h contributions to all orders. From this result an alternative calculation of the kinetic energy is obtained. In addition, a direct calculation of the potential energy is presented which is obtained from a solution of the ladder equation containing p-p and h-h propagation to all orders. These results can be considered as the contributions of selected Goldstone diagrams (including p-p and h-h terms on the same footing) to the kinetic and potential energy in which the SP energy is given by the quasiparticle energy. The results for the summation of Goldstone diagrams leads to a different momentum distribution than the one obtained from integrating the hole spectral function which in general gives less depletion of the Fermi sea. Various arguments, based partly on the results that are obtained, are put forward that a self-consistent determination of the spectral functions including the p-p and h-h ladder contributions (using a realistic interaction) will shed light on the question of nuclear saturation at a nonrelativistic level that is consistent with the observed depletion of SP orbitals in finite nuclei.
Resumo:
A final-state-effects formalism suitable to analyze the high-momentum response of Fermi liquids is presented and used to study the dynamic structure function of liquid 3He. The theory, developed as a natural extension of the Gersch-Rodriguez formalism, incorporates the Fermi statistics explicitly through a new additive term which depends on the semidiagonal two-body density matrix. The use of a realistic momentum distribution, calculated using the diffusion Monte Carlo method, and the inclusion of this additive correction allows for good agreement with available deep-inelastic neutron scattering data.
Resumo:
We consider noncentered vortices and their arrays in a cylindrically trapped Bose-Einstein condensate at zero temperature. We study the kinetic energy and the angular momentum per particle in the Thomas-Fermi regime and their dependence on the distance of the vortices from the center of the trap. Using a perturbative approach with respect to the velocity field of the vortices, we calculate, to first order, the frequency shift of the collective low-lying excitations due to the presence of an off-center vortex or a vortex array, and compare these results with predictions that would be obtained by the application of a simple sum-rule approach, previously found to be very successful for centered vortices. It turns out that the simple sum-rule approach fails for off-centered vortices.