54 resultados para mode-locked laser
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The interconnected porosity of the Cr3C2-NiCr coatings obtained by high-velocity oxy fuel spraying is detrimental in corrosion and wear resistance applications. Laser treatments allow sealing of their surfaces through melting and resolidification of a thin superficial layer. A Nd:YAG laser beam was used to irradiate Cr3C2-NiCr coatings either in the continuous wave mode or at different repetition rates in the pulsed one. Results indicated that high peak and low mean laser irradiances are not good, since samples presented deep grooves and an extensive crack network. At low peak and higher mean laser irradiances the surface was molten, and only a few shallow cracks were observed. The interconnected porosity was completely eliminated in a layer up to 80 m thick, formed by large Cr7C3 grains imbedded in a NiCr matrix.
Resumo:
The interconnected porosity of the Cr3C2-NiCr coatings obtained by high-velocity oxy fuel spraying is detrimental in corrosion and wear resistance applications. Laser treatments allow sealing of their surfaces through melting and resolidification of a thin superficial layer. A Nd:YAG laser beam was used to irradiate Cr3C2-NiCr coatings either in the continuous wave mode or at different repetition rates in the pulsed one. Results indicated that high peak and low mean laser irradiances are not good, since samples presented deep grooves and an extensive crack network. At low peak and higher mean laser irradiances the surface was molten, and only a few shallow cracks were observed. The interconnected porosity was completely eliminated in a layer up to 80 m thick, formed by large Cr7C3 grains imbedded in a NiCr matrix.
Resumo:
A laser-based technique for printing transparent and weakly absorbing liquids is developed. Its principle of operation relies in the tight focusing of short laser pulses inside the liquid and close to its free surface, in such a way that the laser radiation is absorbed in a tiny volume around the beam waist, with practically no absorption in any other location along the beam path. If the absorbed energy overcomes the optical breakdown threshold, a cavitation bubble is generated, and its expansion results in the propulsion of a small fraction of liquid which can be collected on a substrate, leading to the printing of a microdroplet for each laser pulse. The technique does not require the preparation of the liquid in thin film form, and its forward mode of operation imposes no restriction concerning the optical properties of the substrate. These characteristics make it well suited for printing a wide variety of materials of interest in diverse applications. We demonstrate that the film-free laser forward printing technique is capable of printing microdroplets with good resolution, reproducibility and control, and analyze the influence of the main process parameter, laser pulse energy. The mechanisms of liquid printing are also investigated: time-resolved imaging provides a clear picture of the dynamics of liquid transfer which allows understanding the main features observed in the printed droplets.
Resumo:
Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL) and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation.
Resumo:
Objective: An evaluation and comparison is made of the thermal increment at different implant surfaces during irradiation with CO2 and ErCr:YSGG lasers. Study design: Five threaded and impacted implants with four types of surfaces were inserted in an adult pig rib: two implants with a hydroxyapatite surface (HA)(impacted and threaded, respectively), a machined titanium surface implant (TI mach), a titanium plasma spray surface implant (TPS), and a sandblasted, acid-etched surface implant (SBAE). A 0.5-mm diameter bone defect was made in the implant apical zone, and a type-K thermocouple (Termopar)® was placed in contact with the implant. The implants were irradiated in the coronal zone of each implant with a CO2 (4 W continuous mode) and an ErCr:YSGG laser (1.5 W, pulsed mode) first without and then with refrigeration. The temperature variations at the implant apical surface were recorded. Results: An apical temperature increase was recorded in all cases during CO2 and ErCr:YSGG laser irradiation without refrigeration. However, when the ErCr:YSGG was used with a water spray, a decrease in temperature was observed in all implants. The acid-etched and sandblasted surfaces were those most affected by the thermal changes. Conclusions: The ErCr:YSGG laser with a water spray applied to the sealing cap or coronal zone of the implants does not generate thermal increments in the apical surface capable of adversely affecting osseointegration and the integrity of the peri-implant bone tissue
Resumo:
Previous results concerning radiative emission under laser irradiation of silicon nanopowder are reinterpreted in terms of thermal emission. A model is developed that considers the particles in the powder as independent, so under vacuum the only dissipation mechanism is thermal radiation. The supralinear dependence observed between the intensity of the emitted radiation and laser power is predicted by the model, as is the exponential quenching when the gas pressure around the sample increases. The analysis allows us to determine the sample temperature. The local heating of the sample has been assessed independently by the position of the transverse optical Raman mode. Finally, it is suggested that the photoluminescence observed in porous silicon and similar materials could, in some cases, be blackbody radiation
Resumo:
Estudio elaborado a partir de una estancia en la Universidad de Rochester, Estados Unidos, de octubre del 2006 a enero del 2007. La estancia realizada en la Universidad de Rochester estuvo orientada al aprendizaje en profundidad del oftalmoscopio láser de barrido. El oftalmoscopio láser de barrido emplea una técnica confocal con la finalidad de visualizar diferentes estructuras retinianas en seres vivos. El instrumento diseñado y desarrollado en el Centro de Ciencias de la Visión incorpora un sistema de óptica adaptativa y fluorescencia. La óptica adaptativa aplicada en este oftalmoscopio tiene como objetivo corregir las aberraciones existentes en el ojo y así permitir observar detalles de la retina que de otra forma se verían emborronados. De esta forma se consigue alcanzar valores de resolución muy cercanos a los impuestos por difracción. Por otro lado el uso de fluorescencia tiene por objetivo el permitir la visualización de células y estructuras que, de no ser teñidas, son transparentes a la luz y visible. Esta técnica se ha estado utilizando principalmente en primates y ratas, aunque actualmente también se están llevando a cabo medidas de células de epitelio pigmentario en seres humanos ya que el pigmento contenido en estas células permite la aplicación de la fluorescencia sin necesidad de utilizar tinción.
Resumo:
Within last few years a new type of instruments called Terrestrial Laser Scanners (TLS) entered to the commercial market. These devices brought a possibility to obtain completely new type of spatial, three dimensional data describing the object of interest. TLS instruments are generating a type of data that needs a special treatment. Appearance of this technique made possible to monitor deformations of very large objects, like investigated here landslides, with new quality level. This change is visible especially with relation to the size and number of the details that can be observed with this new method. Taking into account this context presented here work is oriented on recognition and characterization of raw data received from the TLS instruments as well as processing phases, tools and techniques to do them. Main objective are definition and recognition of the problems related with usage of the TLS data, characterization of the quality single point generated by TLS, description and investigation of the TLS processing approach for landslides deformation measurements allowing to obtain 3D deformation characteristic and finally validation of the obtained results. The above objectives are based on the bibliography studies and research work followed by several experiments that will prove the conclusions.
Resumo:
En aquest projecte s’ha implementat un sistema de control per a les bombes microfluídiques LPVX de The Lee Company funcionant a mode de xeringa. El sistema consisteix en un circuit controlador basat en el microxip UDN 296 B de Allegro MicroSystems, que conté dos Ponts en H per a controlar motors pas a pas i dos mòduls de Modulació d’Amplada de Polsos (PWM), governat a partir d’un programa de control com a instrument virtual dissenyat sota l’entorn LabVIEW. El programa de control permet indicar la quantitat de volum a aspirar o dispensar per la bomba i escollir entre una execució simple o una de continuada, podent-ne controlar en aquest segona opció el temps entre execució i execució. El programa també permet visualitzar el procés mitjançant la obtenció de la imatge d’una webcam amb DirectShow. Finalment també permet el control remot de l’Instrument Virtual a través de la xarxa d’Internet.
Resumo:
The field of laser application to the restoration and cleaning of cultural assets is amongst the most thriving developments of recent times. Ablative laser technological systems are able to clean and protect inestimable works of art subject to atmospheric agents and degradation over time. This new technology, which has been developing for the last forty year, is now available to restorers and has received a significant success all over Europe. An important contribution in the process of laser innovation has been carried out in Florence by local actors belonging to a creative cluster. The objects of the analysis are the genesis of this innovation in this local Florentine context, and the relationships among the main actors who have contributed in it. The study investigates how culture can play a part in the generation of ideas and innovations, and which are the creative environments that can favour it. In this context, the issue of laser technologies for the restoration of cultural heritage has been analysed as a case study in the various paths taken by the Creative Capacity of the Culture (CCC).
Resumo:
The present project has performed the study and development of a new technique for the detection of gases with range resolution. This technique called FMCW-lidar is a technique that evolves from the FMCW-radar technique to be applied to lidar systems. Moreover, it takes advantage of the appearance of spectral absorption lines because of the interaction between light and gases to tune the light wavelength of a laser emitter with one of this spectral lines and then detects the backscattered light and analyzes it in order to obtain gas concentration measurements. The first part of the project consisted in the analysis of the WMS technique which is a technique for the in-situ measurement of gases. A complete theoretical analysis has been performed and some experiments have been carried out in order to test the technique and to validate its application to an FMCW-modulated system for the detection of gases. The second part of the project consisted in the analysis of the lidar FMCW technique for solid target detection and its extension to continuous media. The classical form of this technique has been analyzed for a distributed medium and a filtering effect has been found which prevents the accurate acquisition of the medium response. A modification of the technique has been proposed and a validation via simulations and some experiments has been carried on. After performing these tests, a novel system is proposed to be developed and tested in order to perform the indicated gas detection with range resolution.
Resumo:
A regulator imposing “sales restrictions” on firms competing in oligopolistic markets may enhance quality provision by the firms. Moreover, for most restrictions levels, the impact on quality selection is invariant to the mode of competition
A variational approach for calculating Franck-Condon factors including mode-mode anharmonic coupling
Resumo:
We have implemented our new procedure for computing Franck-Condon factors utilizing vibrational configuration interaction based on a vibrational self-consistent field reference. Both Duschinsky rotations and anharmonic three-mode coupling are taken into account. Simulations of the first ionization band of Cl O2 and C4 H4 O (furan) using up to quadruple excitations in treating anharmonicity are reported and analyzed. A developer version of the MIDASCPP code was employed to obtain the required anharmonic vibrational integrals and transition frequencies