22 resultados para mass-based leaf nitrogen
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A mesura que la investigació depèn cada vegada més dels computadors, l'emmagatzematge de dades comença a convertir-se en un recurs escàs per als projectes, i suposa una gran part del cost total. Alguns projectes intenten resoldre aquest problema emprant emmagatzament distribuït. És doncs necessari que alguns centres proveeixin de grans quantitats d'emmagatzematge massiu de baix cost basat en cintes magnètiques. L'inconvenient d'aquesta solució és que el rendiment disminueix, particularment a l'hora de tractar-se de grans quantitats d'arxius petits. El nostre objectiu és crear un híbrid entre un sistema d'alt cost i rendiment basat en discs, i un de baix cost i rendiment basat en cintes. Per això, unirem dCache, un sistema d'emmagatzematge distribuït, amb Castor, un sistema d'emmagatzematge jeràrquic, creant sistemes de fitxers virtuals que contindran grans quantitats d'arxius petits per millorar el rendiment global del sistema.
Resumo:
L’aigua i l’energia formen un binomi indissociable. En relació al cicle de l’aigua, des de fa varies dècades s’han desenvolupat diferents formes per recuperar part de l’energia relacionada amb l’aigua, per exemple a partir de centrals hidroelèctriques. No obstant, l’ús d’aquesta aigua també porta associat un gran consum energètic, relacionat sobretot amb el transport, la distribució, la depuració, etc... La depuració d’aigües residuals porta associada una elevada demanda energètica (Obis et al.,2009). En termes energètics, tot i que la despesa elèctrica d’una EDAR varia en funció de diferents paràmetres com la configuració i la capacitat de la planta, la càrrega a tractar, etc... es podria considerar que el rati mig seria d’ aproximadament 0.5 KWh•m-3.Els principals costos d’explotació estan relacionats tant amb la gestió de fangs (28%) com amb el consum elèctric (25%) (50% tractament biològic). Tot i que moltes investigacions relacionades amb el tractament d’aigua residual estan encaminades en disminuir els costos d’operació, des de fa poques dècades s’està investigant la viabilitat de que l’aigua residual fins i tot sigui una font d’energia, canviant la perspectiva, i començant a veure l’aigua residual no com a una problemàtica sinó com a un recurs. Concretament s’estima que l’aigua domèstica conté 9.3 vegades més energia que la necessària per el seu tractament mitjançant processos aerobis (Shizas et al., 2004). Un dels processos més desenvolupats relacionats amb el tractament d’aigües residuals i la producció energètica és la digestió anaeròbia. No obstant, aquesta tecnologia permet el tractament d’altes càrregues de matèria orgànica generant un efluent ric en nitrogen que s’haurà de tractar amb altres tecnologies. Per altre banda, recentment s’està investigant una nova tecnologia relacionada amb el tractament d’aigües residuals i la producció energètica: les piles biològiques (microbial fuel cells, MFC). Aquesta tecnologia permet obtenir directament energia elèctrica a partir de la degradació de substrats biodegradables (Rabaey et al., 2005). Les piles biològiques, més conegudes com a Microbial Fuel Cells (acrònim en anglès, MFC), són una emergent tecnologia que està centrant moltes mirades en el camp de l’ investigació, i que es basa en la producció d’energia elèctrica a partir de substrats biodegradables presents en l’aigua residual (Logan., 2008). Els fonaments de les piles biològiques és molt semblant al funcionament d’una pila Daniell, en la qual es separa en dos compartiments la reacció d’oxidació (compartiment anòdic) i la de reducció (compartiment catòdic) amb l’objectiu de generar un determinat corrent elèctric. En aquest estudi, bàsicament es mostra la posada en marxa d'una pila biològica per a l'eliminació de matèria orgànica i nitrogen de les aigües residuals.
Resumo:
Background: There is growing evidence that traffic-related air pollution reduces birth weight. Improving exposure assessment is a key issue to advance in this research area.Objective: We investigated the effect of prenatal exposure to traffic-related air pollution via geographic information system (GIS) models on birth weight in 570 newborns from the INMA (Environment and Childhood) Sabadell cohort.Methods: We estimated pregnancy and trimester-specific exposures to nitrogen dioxide and aromatic hydrocarbons [benzene, toluene, ethylbenzene, m/p-xylene, and o-xylene (BTEX)] by using temporally adjusted land-use regression (LUR) models. We built models for NO2 and BTEX using four and three 1-week measurement campaigns, respectively, at 57 locations. We assessed the relationship between prenatal air pollution exposure and birth weight with linear regression models. We performed sensitivity analyses considering time spent at home and time spent in nonresidential outdoor environments during pregnancy.Results: In the overall cohort, neither NO2 nor BTEX exposure was significantly associated with birth weight in any of the exposure periods. When considering only women who spent < 2 hr/day in nonresidential outdoor environments, the estimated reductions in birth weight associated with an interquartile range increase in BTEX exposure levels were 77 g [95% confidence interval (CI), 7–146 g] and 102 g (95% CI, 28–176 g) for exposures during the whole pregnancy and the second trimester, respectively. The effects of NO2 exposure were less clear in this subset.Conclusions: The association of BTEX with reduced birth weight underscores the negative role of vehicle exhaust pollutants in reproductive health. Time–activity patterns during pregnancy complement GIS-based models in exposure assessment.
Resumo:
We determine the structure of neutron stars within a Brueckner-Hartree-Fock approach based on realistic nucleon-nucleon, nucleon-hyperon, and hyperon-hyperon interactions. Our results indicate rather low maximum masses below 1.4 solar masses. This feature is insensitive to the nucleonic part of the EOS due to a strong compensation mechanism caused by the appearance of hyperons and represents thus strong evidence for the presence of nonbaryonic "quark" matter in the interior of heavy stars.
Resumo:
Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.
Resumo:
In October 1998, Hurricane Mitch triggered numerous landslides (mainly debris flows) in Honduras and Nicaragua, resulting in a high death toll and in considerable damage to property. The potential application of relatively simple and affordable spatial prediction models for landslide hazard mapping in developing countries was studied. Our attention was focused on a region in NW Nicaragua, one of the most severely hit places during the Mitch event. A landslide map was obtained at 1:10 000 scale in a Geographic Information System (GIS) environment from the interpretation of aerial photographs and detailed field work. In this map the terrain failure zones were distinguished from the areas within the reach of the mobilized materials. A Digital Elevation Model (DEM) with 20 m×20 m of pixel size was also employed in the study area. A comparative analysis of the terrain failures caused by Hurricane Mitch and a selection of 4 terrain factors extracted from the DEM which, contributed to the terrain instability, was carried out. Land propensity to failure was determined with the aid of a bivariate analysis and GIS tools in a terrain failure susceptibility map. In order to estimate the areas that could be affected by the path or deposition of the mobilized materials, we considered the fact that under intense rainfall events debris flows tend to travel long distances following the maximum slope and merging with the drainage network. Using the TauDEM extension for ArcGIS software we generated automatically flow lines following the maximum slope in the DEM starting from the areas prone to failure in the terrain failure susceptibility map. The areas crossed by the flow lines from each terrain failure susceptibility class correspond to the runout susceptibility classes represented in a runout susceptibility map. The study of terrain failure and runout susceptibility enabled us to obtain a spatial prediction for landslides, which could contribute to landslide risk mitigation.
Resumo:
A dual model with a nonlinear proton Regge trajectory in the missing mass (M_X^2) channel is constructed. A background based on a direct-channel exotic trajectory, developed and applied earlier for the inclusive electron-proton cross section description in the nucleon resonance region, is used. The parameters of the model are determined from the extrapolations to earlier experiments. Predictions for the low-mass (2 < M_X^2 < 8GeV^2) diffraction dissociation cross sections at the LHC energies are given.
Resumo:
Marked changes in the content of protein in the diet affects the rat"s pattern of growth, but there is not any data on the effects to moderate changes. Here we used a genetically obese rat strain (Zucker) to examine the metabolic modifications induced to moderate changes in the content of protein of diets, doubling (high-protein (HP): 30%) or halving (low-protein (LP): 8%) the content of protein of reference diet (RD: 16%). Nitrogen, energy balances, and amino acid levels were determined in lean (L) and obese (O) animals after 30 days on each diet. Lean HP (LHP) animals showed higher energy efficiency and amino acid catabolism but maintained similar amino acid accrual rates to the lean RD (LRD) group. Conversely, the lean LP (LLP) group showed a lower growth rate, which was compensated by a relative increase in fat mass. Furthermore, these animals showed greater efficiency accruing amino acids. Obesity increased amino acid catabolism as a result of massive amino acid intake; however, obese rats maintained protein accretion rates, which, in the OHP group, implied a normalization of energy efficiency. Nonetheless, the obese OLP group showed the same protein accretion pattern as in lean animals (LLP). In the base of our data, concluded that the Zucker rats accommodate their metabolism to support moderates increases in the content of protein in the diet, but do not adjust in the same way to a 50% decrease in content of protein, as shown by an index of growth reduced, both in lean and obese rats.
Resumo:
The present study arose from the need to determine inorganic arsenic (iAs) at low levels in cereal-based food. Validated methods with a low limit of detection (LOD) are required to analyse these kinds of food. An analytical method for the determination of iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA) in cereal-based food and infant cereals is reported. The method was optimised and validated to achieve low LODs. Ion chromatography-inductively coupled plasma mass spectrometry (LC-ICPMS) was used for arsenic speciation. The main quality parameters were established. To expand the applicability of the method, different cereal products were analysed: bread, biscuits, breakfast cereals, wheat flour, corn snacks, pasta and infant cereals. The total and inorganic arsenic content of 29 cereal-based food samples ranged between 3.7-35.6 and 3.1-26.0 microg As kg-1, respectively. The present method could be considered a valuable tool for assessing inorganic arsenic contents in cereal-based foods.
Resumo:
Pig slurry is a valuable nutrient resource but constitutes a waste disposal problem in areas of high animal density. In the semiarid area of Pla d’Urgell, in the Ebro Valley, North-East Spain, irrigated crops receive large amounts of nutrients in the form of manure and mineral fertilizers. We studied the effect of pig slurry and additional side-dress mineral fertilizers on irrigated wheat, Triticum aestivum L., on a coarse loam soil, with high soil P and K levels. Yields increased by 62.3% when using pig slurry. The application of ammonium sulfate nitrate sidedress did not significantly increase wheat production. The average apparent recoveries were higher for potassium (88.7%) than for nitrogen (51.3%) and phosphorus (36.3%). Greater amounts of soil NO3-N were measured over the four growing seasons, which was consistent with the amount of N applied. Macronutrient and micronutrient uptake was significant higher for pig slurry treatments, but only small differences were found between the pig slurry and pig slurry plus ammonium sulfate nitrate treatments. The unfertilized treatment showed significantly lower soil P, K, Cu and Zn content than pig slurry treatments; 34%, 21%, 34%, and 26% respectively. These findings could be used to develop a nutrient management plan based on knowledge of soil test results and crop nutrient removal. This could help to improve the use of pig slurry and mineral fertilizers on limited available land areas and prevent the accumulation of potentially toxic elements in soils and the export of nutrients through agricultural drainage.
A priori parameterisation of the CERES soil-crop models and tests against several European data sets
Resumo:
Mechanistic soil-crop models have become indispensable tools to investigate the effect of management practices on the productivity or environmental impacts of arable crops. Ideally these models may claim to be universally applicable because they simulate the major processes governing the fate of inputs such as fertiliser nitrogen or pesticides. However, because they deal with complex systems and uncertain phenomena, site-specific calibration is usually a prerequisite to ensure their predictions are realistic. This statement implies that some experimental knowledge on the system to be simulated should be available prior to any modelling attempt, and raises a tremendous limitation to practical applications of models. Because the demand for more general simulation results is high, modellers have nevertheless taken the bold step of extrapolating a model tested within a limited sample of real conditions to a much larger domain. While methodological questions are often disregarded in this extrapolation process, they are specifically addressed in this paper, and in particular the issue of models a priori parameterisation. We thus implemented and tested a standard procedure to parameterize the soil components of a modified version of the CERES models. The procedure converts routinely-available soil properties into functional characteristics by means of pedo-transfer functions. The resulting predictions of soil water and nitrogen dynamics, as well as crop biomass, nitrogen content and leaf area index were compared to observations from trials conducted in five locations across Europe (southern Italy, northern Spain, northern France and northern Germany). In three cases, the model’s performance was judged acceptable when compared to experimental errors on the measurements, based on a test of the model’s root mean squared error (RMSE). Significant deviations between observations and model outputs were however noted in all sites, and could be ascribed to various model routines. In decreasing importance, these were: water balance, the turnover of soil organic matter, and crop N uptake. A better match to field observations could therefore be achieved by visually adjusting related parameters, such as field-capacity water content or the size of soil microbial biomass. As a result, model predictions fell within the measurement errors in all sites for most variables, and the model’s RMSE was within the range of published values for similar tests. We conclude that the proposed a priori method yields acceptable simulations with only a 50% probability, a figure which may be greatly increased through a posteriori calibration. Modellers should thus exercise caution when extrapolating their models to a large sample of pedo-climatic conditions for which they have only limited information.
Resumo:
In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.
Resumo:
In this work we will prove that SiC-based MIS capacitors can work in environments with extremely high concentrations of water vapor and still be sensitive to hydrogen, CO and hydrocarbons, making these devices suitable for monitoring the exhaust gases of hydrogen or hydrocarbons based fuel cells. Under the harshest conditions (45% of water vapor by volume ratio to nitrogen), Pt/TaOx/SiO2/SiC MIS capacitors are able to detect the presence of 1 ppm of hydrogen, 2 ppm of CO, 100 ppm of ethane or 20 ppm of ethene, concentrations that are far below the legal permissible exposure limits.
Resumo:
The present study arose from the need to determine inorganic arsenic (iAs) at low levels in cereal-based food. Validated methods with a low limit of detection (LOD) are required to analyse these kinds of food. An analytical method for the determination of iAs, methylarsonic acid (MA) and dimethylarsinic acid (DMA) in cereal-based food and infant cereals is reported. The method was optimised and validated to achieve low LODs. Ion chromatography-inductively coupled plasma mass spectrometry (LC-ICPMS) was used for arsenic speciation. The main quality parameters were established. To expand the applicability of the method, different cereal products were analysed: bread, biscuits, breakfast cereals, wheat flour, corn snacks, pasta and infant cereals. The total and inorganic arsenic content of 29 cereal-based food samples ranged between 3.7-35.6 and 3.1-26.0 microg As kg-1, respectively. The present method could be considered a valuable tool for assessing inorganic arsenic contents in cereal-based foods.