29 resultados para many-objective problems
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The decisions of many individuals and social groups, taking according to well-defined objectives, are causing serious social and environmental problems, in spite of following the dictates of economic rationality. There are many examples of serious problems for which there are not yet appropriate solutions, such as management of scarce natural resources including aquifer water or the distribution of space among incompatible uses. In order to solve these problems, the paper first characterizes the resources and goods involved from an economic perspective. Then, for each case, the paper notes that there is a serious divergence between individual and collective interests and, where possible, it designs the procedure for solving the conflict of interests. With this procedure, the real opportunities for the application of economic theory are shown, and especially the theory on collective goods and externalities. The limitations of conventional economic analysis are shown and the opportunity to correct the shortfalls is examined. Many environmental problems, such as climate change, have an impact on different generations that do not participate in present decisions. The paper shows that for these cases, the solutions suggested by economic theory are not valid. Furthermore, conventional methods of economic valuation (which usually help decision-makers) are unable to account for the existence of different generations and tend to obviate long-term impacts. The paper analyzes how economic valuation methods could account for the costs and benefits enjoyed by present and future generations. The paper studies an appropriate consideration of preferences for future consumption and the incorporation of sustainability as a requirement in social decisions, which implies not only more efficiency but also a fairer distribution between generations than the one implied by conventional economic analysis.
Resumo:
Despite the huge increase in processor and interprocessor network performace, many computational problems remain unsolved due to lack of some critical resources such as floating point sustained performance, memory bandwidth, etc... Examples of these problems are found in areas of climate research, biology, astrophysics, high energy physics (montecarlo simulations) and artificial intelligence, among others. For some of these problems, computing resources of a single supercomputing facility can be 1 or 2 orders of magnitude apart from the resources needed to solve some them. Supercomputer centers have to face an increasing demand on processing performance, with the direct consequence of an increasing number of processors and systems, resulting in a more difficult administration of HPC resources and the need for more physical space, higher electrical power consumption and improved air conditioning, among other problems. Some of the previous problems can´t be easily solved, so grid computing, intended as a technology enabling the addition and consolidation of computing power, can help in solving large scale supercomputing problems. In this document, we describe how 2 supercomputing facilities in Spain joined their resources to solve a problem of this kind. The objectives of this experience were, among others, to demonstrate that such a cooperation can enable the solution of bigger dimension problems and to measure the efficiency that could be achieved. In this document we show some preliminary results of this experience and to what extend these objectives were achieved.
Resumo:
Les xarxes híbrides satèl·lit-terrestre ofereixen connectivitat a zones remotes i aïllades i permeten resoldre nombrosos problemes de comunicacions. No obstant, presenten diversos reptes, ja que realitzen la comunicació per un canal mòbil terrestre i un canal satèl·lit contigu. Un d'aquests reptes és trobar mecanismes per realitzar eficientment l'enrutament i el control de flux, de manera conjunta. L'objectiu d'aquest projecte és simular i estudiar algorismes existents que resolguin aquests problemes, així com proposar-ne de nous, mitjançant diverses tècniques d'optimització convexa. A partir de les simulacions realitzades en aquest estudi, s'han analitzat àmpliament els diversos problemes d'enrutament i control de flux, i s'han avaluat els resultats obtinguts i les prestacions dels algorismes emprats. En concret, s'han implementat de manera satisfactòria algorismes basats en el mètode de descomposició dual, el mètode de subgradient, el mètode de Newton i el mètode de la barrera logarítmica, entre d'altres, per tal de resoldre els problemes d'enrutament i control de flux plantejats.
Resumo:
Hub congestion is a major problem and a relevant policy issue because it causes delays and many organizational problems at airports that end up implying unpleasant consequences both for air travelers and airlines. In a competitive framework in which carriers choose aircraft size, this paper suggests that airlines schedule too many flights using overly small aircraft, which constitutes a major contributor to congestion. Two- part congestion tolls, accounting for the congestion imposed on other carriers and the congestion imposed on all passengers, are needed to recover e¢ ciency. Finally, we analyze the validity of the results by studying the effects of network size, airport capacity, competition in layover time, and the formation of airline alliances. Keywords: congestion; hub-and-spoke networks; overprovision of frequency; con- gestion internalization; congestion tolls JEL Classiffication Numbers: L13; L2; L93
Resumo:
Many engineering problems that can be formulatedas constrained optimization problems result in solutionsgiven by a waterfilling structure; the classical example is thecapacity-achieving solution for a frequency-selective channel.For simple waterfilling solutions with a single waterlevel and asingle constraint (typically, a power constraint), some algorithmshave been proposed in the literature to compute the solutionsnumerically. However, some other optimization problems result insignificantly more complicated waterfilling solutions that includemultiple waterlevels and multiple constraints. For such cases, itmay still be possible to obtain practical algorithms to evaluate thesolutions numerically but only after a painstaking inspection ofthe specific waterfilling structure. In addition, a unified view ofthe different types of waterfilling solutions and the correspondingpractical algorithms is missing.The purpose of this paper is twofold. On the one hand, itoverviews the waterfilling results existing in the literature from aunified viewpoint. On the other hand, it bridges the gap betweena wide family of waterfilling solutions and their efficient implementationin practice; to be more precise, it provides a practicalalgorithm to evaluate numerically a general waterfilling solution,which includes the currently existing waterfilling solutions andothers that may possibly appear in future problems.
Resumo:
Informe de investigación realizado a partir de una estancia en el Department of Computer and Information Science de la Norwegian University of Science and Technology (NTNU), Noruega, entre setiembre i diciembre de 2006. El uso de componentes de software llamados Commercial-Off-The-Shelf (COTS) en el desarrollo de sistemas basados en componentes implica varios retos. Uno de ellos es la falta de información disponible y adecuada para dar soporte al proceso de selección de componentes a ser integrados. Para lidiar con estos problemas, se esta desarrollando un trabajo de tesis que propone un método llamado GOThIC (Goal-Oriented Taxonomy and reuse Infrastructure Construction). El método está orientado a construir una infrastructura de reuse para facilitar la búsqueda y reuse de componentes COTS. La estancia en la NTNU, reportada en este documento, tuvo como objetivo primordial las mejora del método y la obtención de datos empíricos para darle soporte. Algunos de los principales resultados fueron la obtención de datos empíricos fundamentando la utilización del método en ámbitos industriales de selección de componentes COTS, así como una nueva estrategia para conseguir de forma factible e incremental, la federación y reuso de los diferentes esfuerzos existentes para encontrar, seleccionar y mantener componentes COTS y Open Source (OSS) -comúnmente llamados componentes Off-The-Shelf (OTS) - en forma estructurada.
Resumo:
The paper develops a stability theory for the optimal value and the optimal set mapping of optimization problems posed in a Banach space. The problems considered in this paper have an arbitrary number of inequality constraints involving lower semicontinuous (not necessarily convex) functions and one closed abstract constraint set. The considered perturbations lead to problems of the same type as the nominal one (with the same space of variables and the same number of constraints), where the abstract constraint set can also be perturbed. The spaces of functions involved in the problems (objective and constraints) are equipped with the metric of the uniform convergence on the bounded sets, meanwhile in the space of closed sets we consider, coherently, the Attouch-Wets topology. The paper examines, in a unified way, the lower and upper semicontinuity of the optimal value function, and the closedness, lower and upper semicontinuity (in the sense of Berge) of the optimal set mapping. This paper can be seen as a second part of the stability theory presented in [17], where we studied the stability of the feasible set mapping (completed here with the analysis of the Lipschitz-like property).
Resumo:
Actualmente existen muchas aplicaciones paralelas/distribuidas en las cuales SPMD es el paradigma más usado. Obtener un buen rendimiento en una aplicación paralela de este tipo es uno de los principales desafíos dada la gran cantidad de aplicaciones existentes. Este objetivo no es fácil de resolver ya que existe una gran variedad de configuraciones de hardware, y también la naturaleza de los problemas pueden ser variados así como la forma de implementarlos. En consecuencia, si no se considera adecuadamente la combinación "software/hardware" pueden aparecer problemas inherentes a una aplicación iterativa sin una jerarquía de control definida de acuerdo a este paradigma. En SPMD todos los procesos ejecutan el mismo código pero computan una sección diferente de los datos de entrada. Una solución a un posible problema del rendimiento es proponer una estrategia de balance de carga para homogeneizar el cómputo entre los diferentes procesos. En este trabajo analizamos el benchmark CG con cargas heterogéneas con la finalidad de detectar los posibles problemas de rendimiento en una aplicación real. Un factor que determina el rendimiento en esta aplicación es la cantidad de elementos nonzero contenida en la sección de matriz asignada a cada proceso. Determinamos que es posible definir una estrategia de balance de carga que puede ser implementada de forma dinámica y demostramos experimentalmente que el rendimiento de la aplicación puede mejorarse de forma significativa con dicha estrategia.
Resumo:
In this note, we consider claims problems with indivisible goods. Specifically, by applying recursively the P-rights lower bound (Jiménez-Gómez and Marco-Gil (2008)), we ensure the fulfillment of Weak Order Preservation, considered by many authors as a minimal requirement of fairness. Moreover, we retrieve the Discrete Constrained Equal Losses and the Discrete Constrained Equal Awards rules (Herrero and Martíınez (2008)). Finally, by the recursive double imposition of a lower and an upper bound, we obtain the average between them. Keywords: Claims problems, Indivisibilities, Order Preservation, Constrained Egalitarian rules, Midpoint. JEL classification: C71, D63, D71.
Resumo:
In the last few years, many researchers have studied the presence of common dimensions of temperament in subjects with symptoms of anxiety. The aim of this study is to examine the association between temperamental dimensions (high negative affect and activity level) and anxiety problems in clinicalpreschool children. A total of 38 children, ages 3 to 6 years, from the Infant and Adolescent Mental Health Center of Girona and the Center of Diagnosis and Early Attention of Sabadell and Olot were evaluated by parents and psychologists. Their parents completed several screening scales and, subsequently, clinical child psychopathology professionals carried out diagnostic interviews with children from the sample who presented signs of anxiety. Findings showed that children with high levels of negative affect and low activity level have pronounced symptoms of anxiety. However, children with anxiety disorders do not present different temperament styles from their peers without these pathologies
Resumo:
Black-box optimization problems (BBOP) are de ned as those optimization problems in which the objective function does not have an algebraic expression, but it is the output of a system (usually a computer program). This paper is focussed on BBOPs that arise in the eld of insurance, and more speci cally in reinsurance problems. In this area, the complexity of the models and assumptions considered to de ne the reinsurance rules and conditions produces hard black-box optimization problems, that must be solved in order to obtain the optimal output of the reinsurance. The application of traditional optimization approaches is not possible in BBOP, so new computational paradigms must be applied to solve these problems. In this paper we show the performance of two evolutionary-based techniques (Evolutionary Programming and Particle Swarm Optimization). We provide an analysis in three BBOP in reinsurance, where the evolutionary-based approaches exhibit an excellent behaviour, nding the optimal solution within a fraction of the computational cost used by inspection or enumeration methods.
Resumo:
Background: Choosing an adequate measurement instrument depends on the proposed use of the instrument, the concept to be measured, the measurement properties (e.g. internal consistency, reproducibility, content and construct validity, responsiveness, and interpretability), the requirements, the burden for subjects, and costs of the available instruments. As far as measurement properties are concerned, there are no sufficiently specific standards for the evaluation of measurement properties of instruments to measure health status, and also no explicit criteria for what constitutes good measurement properties. In this paper we describe the protocol for the COSMIN study, the objective of which is to develop a checklist that contains COnsensus-based Standards for the selection of health Measurement INstruments, including explicit criteria for satisfying these standards. We will focus on evaluative health related patient-reported outcomes (HR-PROs), i.e. patient-reported health measurement instruments used in a longitudinal design as an outcome measure, excluding health care related PROs, such as satisfaction with care or adherence. The COSMIN standards will be made available in the form of an easily applicable checklist.Method: An international Delphi study will be performed to reach consensus on which and how measurement properties should be assessed, and on criteria for good measurement properties. Two sources of input will be used for the Delphi study: (1) a systematic review of properties, standards and criteria of measurement properties found in systematic reviews of measurement instruments, and (2) an additional literature search of methodological articles presenting a comprehensive checklist of standards and criteria. The Delphi study will consist of four (written) Delphi rounds, with approximately 30 expert panel members with different backgrounds in clinical medicine, biostatistics, psychology, and epidemiology. The final checklist will subsequently be field-tested by assessing the inter-rater reproducibility of the checklist.Discussion: Since the study will mainly be anonymous, problems that are commonly encountered in face-to-face group meetings, such as the dominance of certain persons in the communication process, will be avoided. By performing a Delphi study and involving many experts, the likelihood that the checklist will have sufficient credibility to be accepted and implemented will increase.
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid (whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then the problem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
The problems arising in commercial distribution are complex and involve several players and decision levels. One important decision is relatedwith the design of the routes to distribute the products, in an efficient and inexpensive way.This article deals with a complex vehicle routing problem that can beseen as a new extension of the basic vehicle routing problem. The proposed model is a multi-objective combinatorial optimization problemthat considers three objectives and multiple periods, which models in a closer way the real distribution problems. The first objective is costminimization, the second is balancing work levels and the third is amarketing objective. An application of the model on a small example, with5 clients and 3 days, is presented. The results of the model show the complexity of solving multi-objective combinatorial optimization problems and the contradiction between the several distribution management objective.
Resumo:
In todays competitive markets, the importance of goodscheduling strategies in manufacturing companies lead to theneed of developing efficient methods to solve complexscheduling problems.In this paper, we studied two production scheduling problemswith sequence-dependent setups times. The setup times areone of the most common complications in scheduling problems,and are usually associated with cleaning operations andchanging tools and shapes in machines.The first problem considered is a single-machine schedulingwith release dates, sequence-dependent setup times anddelivery times. The performance measure is the maximumlateness.The second problem is a job-shop scheduling problem withsequence-dependent setup times where the objective is tominimize the makespan.We present several priority dispatching rules for bothproblems, followed by a study of their performance. Finally,conclusions and directions of future research are presented.