22 resultados para learning network
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Much of the initial work on Open Educational Resources (OER) has inevitably concentrated on how to produce the resources themselves and to establish the idea in the community. It is now eight years since the term OER was first used and more than ten years since the concept of open content was described and a greater focus is now emerging on the way in which OER can influence policy and change the way in which educational systems help people learn. The Open University UK and Carnegie Mellon University are working in partnership on the OLnet (Open Learning Network), funded by The William and Flora Hewlett Foundation with the aims to search out the evidence for use and reuse of OER and to establish a network for information sharing about research in the field. This means both gathering evidence and developing approaches for how to research and understand ways to learn in a more open world, particularly linked to OER, but also looking at other influences.
Resumo:
En esta comunicación se esclarecen funciones, roles, competencias y tareas del docente universitario en entornos virtuales de enseñanza y aprendizaje con el propósito de contribuir a mejorar el diseño de acciones formativas dirigidas a la capacitación del profesorado para este ejercicio Este resultado se obtiene del análisis de significativas referencias que tratan el tema y de la valoración del diseño de acciones formativas realizadas en universidades europeas que participan activamente de este propósito. El estudio constituye una acción del proyecto Elene-TT - elearning network for Teacher Training.
Resumo:
This paper describes a Computer-Supported Collaborative Learning (CSCL) case study in engineering education carried out within the context of a network management course. The case study shows that the use of two computing tools developed by the authors and based on Free- and Open-Source Software (FOSS) provide significant educational benefits over traditional engineering pedagogical approaches in terms of both concepts and engineering competencies acquisition. First, the Collage authoring tool guides and supports the course teacher in the process of authoring computer-interpretable representations (using the IMS Learning Design standard notation) of effective collaborative pedagogical designs. Besides, the Gridcole system supports the enactment of that design by guiding the students throughout the prescribed sequence of learning activities. The paper introduces the goals and context of the case study, elaborates onhow Collage and Gridcole were employed, describes the applied evaluation methodology, anddiscusses the most significant findings derived from the case study.
Resumo:
OER-based learning has the potential to overcome many shortcomings and problems of traditional education. It is not hampered by IP restrictions; can depend on collaborative, cumulative, iterative refinement of resources; and the digital form provides unprecedented flexibility with respect to configuration and delivery. The OER community is a progressive group of educators and learners with decades of learning research to draw from, who know that we must prepare learners for an evolving and diverse reality. Despite this OER tends to replicate the unsuccessful characteristics of traditional education. To remedy this we may need to remember the importance of imperfection, mistakes, problems, disagreement, and the incomplete for engaged learning, and relinquish our notions of perfection, acknowledging that learners learn differently and we need diverse learners. We must stretch our perceptions of quality and provide mechanisms for engaging the incredible pool of educators globally to fulfill the promise of inclusive education.
Resumo:
In this paper we look at how a web-based social software can be used to make qualitative data analysis of online peer-to-peer learning experiences. Specifically, we propose to use Cohere, a web-based social sense-making tool, to observe, track, annotate and visualize discussion group activities in online courses. We define a specific methodology for data observation and structuring, and present results of the analysis of peer interactions conducted in discussion forum in a real case study of a P2PU course. Finally we discuss how network visualization and analysis can be used to gather a better understanding of the peer-to-peer learning experience. To do so, we provide preliminary insights on the social, dialogical and conceptual connections that have been generated within one online discussion group.
Resumo:
This article presents preliminary findings from a research study conducted by the Institute for the Study of Knowledge Management in Education on the role of open educational resources (OER) in transforming pedagogy. Based on a study of art and humanities teachers participating in an OER training network, the study reveals how exposure to OER resources and tools support collaboration among teachers, as well as new conversations about teaching practices. These findings have implications for engaging teachers in adopting new OER use practices, and for how OER can be integrated as a model for innovation in teaching and in resource development.
Resumo:
This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role isto provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis
Resumo:
This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
I use a multi-layer feedforward perceptron, with backpropagation learning implemented via stochastic gradient descent, to extrapolate the volatility smile of Euribor derivatives over low-strikes by training the network on parametric prices.
Resumo:
One of the most relevant difficulties faced by first-year undergraduate students is to settle into the educational environment of universities. This paper presents a case study that proposes a computer-assisted collaborative experience designed to help students in their transition from high school to university. This is done by facilitating their first contact with the campus and its services, the university community, methodologies and activities. The experience combines individual and collaborative activities, conducted in and out of the classroom, structured following the Jigsaw Collaborative Learning Flow Pattern. A specific environment including portable technologies with network and computer applications has been developed to support and facilitate the orchestration of a flow of learning activities into a single integrated learning setting. The result is a Computer-Supported Collaborative Blended Learning scenario, which has been evaluated with first-year university students of the degrees of Software and Audiovisual Engineering within the subject Introduction to Information and Communications Technologies. The findings reveal that the scenario improves significantly students’ interest in their studies and their understanding about the campus and services provided. The environment is also an innovative approach to successfully support the heterogeneous activities conducted by both teachers and students during the scenario. This paper introduces the goals and context of the case study, describes how the technology was employed to conduct the learning scenario, the evaluation methods and the main results of the experience.
Resumo:
The final year project came to us as an opportunity to get involved in a topic which has appeared to be attractive during the learning process of majoring in economics: statistics and its application to the analysis of economic data, i.e. econometrics.Moreover, the combination of econometrics and computer science is a very hot topic nowadays, given the Information Technologies boom in the last decades and the consequent exponential increase in the amount of data collected and stored day by day. Data analysts able to deal with Big Data and to find useful results from it are verydemanded in these days and, according to our understanding, the work they do, although sometimes controversial in terms of ethics, is a clear source of value added both for private corporations and the public sector. For these reasons, the essence of this project is the study of a statistical instrument valid for the analysis of large datasets which is directly related to computer science: Partial Correlation Networks.The structure of the project has been determined by our objectives through the development of it. At first, the characteristics of the studied instrument are explained, from the basic ideas up to the features of the model behind it, with the final goal of presenting SPACE model as a tool for estimating interconnections in between elements in large data sets. Afterwards, an illustrated simulation is performed in order to show the power and efficiency of the model presented. And at last, the model is put into practice by analyzing a relatively large data set of real world data, with the objective of assessing whether the proposed statistical instrument is valid and useful when applied to a real multivariate time series. In short, our main goals are to present the model and evaluate if Partial Correlation Network Analysis is an effective, useful instrument and allows finding valuable results from Big Data.As a result, the findings all along this project suggest the Partial Correlation Estimation by Joint Sparse Regression Models approach presented by Peng et al. (2009) to work well under the assumption of sparsity of data. Moreover, partial correlation networks are shown to be a very valid tool to represent cross-sectional interconnections in between elements in large data sets.The scope of this project is however limited, as there are some sections in which deeper analysis would have been appropriate. Considering intertemporal connections in between elements, the choice of the tuning parameter lambda, or a deeper analysis of the results in the real data application are examples of aspects in which this project could be completed.To sum up, the analyzed statistical tool has been proved to be a very useful instrument to find relationships that connect the elements present in a large data set. And after all, partial correlation networks allow the owner of this set to observe and analyze the existing linkages that could have been omitted otherwise.
Resumo:
Peer-reviewed