14 resultados para learning control

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a hybrid coordination method for behavior-based control architectures. The hybrid method takes advantages of the robustness and modularity in competitive approaches as well as optimized trajectories in cooperative ones. This paper shows the feasibility of applying this hybrid method with a 3D-navigation to an autonomous underwater vehicle (AUV). The behaviors are learnt online by means of reinforcement learning. A continuous Q-learning implemented with a feed-forward neural network is employed. Realistic simulations were carried out. The results obtained show the good performance of the hybrid method on behavior coordination as well as the convergence of the behaviors

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main objective of this ex post facto study is to compare the differencesin cognitive functions and their relation to schizotypal personality traits between agroup of unaffected parents of schizophrenic patients and a control group. A total of 52unaffected biological parents of schizophrenic patients and 52 unaffected parents ofunaffected subjects were assessed in measures of attention (Continuous PerformanceTest- Identical Pairs Version, CPT-IP), memory and verbal learning (California VerbalLearning Test, CVLT) as well as schizotypal personality traits (Oxford-Liverpool Inventoryof Feelings and Experiences, O-LIFE). The parents of the patients with schizophreniadiffer from the parents of the control group in omission errors on the ContinuousPerformance Test- Identical Pairs, on a measure of recall and on two contrast measuresof the California Verbal Learning Test. The associations between neuropsychologicalvariables and schizotpyal traits are of a low magnitude. There is no defined pattern ofthe relationship between cognitive measures and schizotypal traits

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the future, robots will enter our everyday lives to help us with various tasks.For a complete integration and cooperation with humans, these robots needto be able to acquire new skills. Sensor capabilities for navigation in real humanenvironments and intelligent interaction with humans are some of the keychallenges.Learning by demonstration systems focus on the problem of human robotinteraction, and let the human teach the robot by demonstrating the task usinghis own hands. In this thesis, we present a solution to a subproblem within thelearning by demonstration field, namely human-robot grasp mapping. Robotgrasping of objects in a home or office environment is challenging problem.Programming by demonstration systems, can give important skills for aidingthe robot in the grasping task.The thesis presents two techniques for human-robot grasp mapping, directrobot imitation from human demonstrator and intelligent grasp imitation. Inintelligent grasp mapping, the robot takes the size and shape of the object intoconsideration, while for direct mapping, only the pose of the human hand isavailable.These are evaluated in a simulated environment on several robot platforms.The results show that knowing the object shape and size for a grasping taskimproves the robot precision and performance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a novel approach to assigning roles to robots in a team of physical heterogeneous robots. Its members compete for these roles and get rewards for them. The rewards are used to determine each agent’s preferences and which agents are better adapted to the environment. These aspects are included in the decision making process. Agent interactions are modelled using the concept of an ecosystem in which each robot is a species, resulting in emergent behaviour of the whole set of agents. One of the most important features of this approach is its high adaptability. Unlike some other learning techniques, this approach does not need to start a whole exploitation process when the environment changes. All this is exemplified by means of experiments run on a simulator. In addition, the algorithm developed was applied as applied to several teams of robots in order to analyse the impact of heterogeneity in these systems

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a machine learning approach to modeling bowing control parametercontours in violin performance. Using accurate sensing techniqueswe obtain relevant timbre-related bowing control parameters such as bowtransversal velocity, bow pressing force, and bow-bridge distance of eachperformed note. Each performed note is represented by a curve parametervector and a number of note classes are defined. The principal componentsof the data represented by the set of curve parameter vectors are obtainedfor each class. Once curve parameter vectors are expressed in the new spacedefined by the principal components, we train a model based on inductivelogic programming, able to predict curve parameter vectors used for renderingbowing controls. We evaluate the prediction results and show the potentialof the model by predicting bowing control parameter contours from anannotated input score.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En este estudio presentamos una experiencia llevada a cabo con estudiantes de la asignatura “Psicología de la Educación” de diferentes centros universitarios. Tomando como marco de referencia las teorías constructivistas del aprendizaje, el objetivo de nuestro trabajo se centra en comprobar la incidencia de la utilización de diferentes estrategias de enseñanza por parte del profesor y de determinadas estrategias de aprendizaje en el proceso de registrar la información por parte de los estudiantes, en la significatividad del aprendizaje.Los resultados obtenidos muestran que en los grupos donde los profesores han utilizado estrategias de enseñanza diferentes a la clase magistral, se ha producido un cambio positivo en las respuestas de los estudiantes o se ha mantenido el mismo nivel, mientras que el grupo donde se ha utilizado una metodología magistral, el nivel de respuesta es inferior. Así mismo, hemos podido observar como los grupos de estudiantes que utilizan las estrategias de aprendizaje seleccionadas para tomar apuntes mejoran su nivel de respuestas, lo cual no se produce en el grupo control

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The virtual learning environments are an option in permanent training with great possibilities for adults who look for studies that are compatible with their jobs and with their family life. So as to participate in determined learning as much in attitudes as knowledge and skills. The article is dedicated to analysing the necessary linguistic habits for moving within an environment of this type and offers didactic proposals that can facilitate the active participation in a virtual course and widen the perspectives of the control of new channels of communication with objectives that are different to learning