39 resultados para kernel estimates

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegeu el resum a l'inici del document del fitxer adjunt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For the standard kernel density estimate, it is known that one can tune the bandwidth such that the expected L1 error is within a constant factor of the optimal L1 error (obtained when one is allowed to choose the bandwidth with knowledge of the density). In this paper, we pose the same problem for variable bandwidth kernel estimates where the bandwidths are allowed to depend upon the location. We show in particular that for positive kernels on the real line, for any data-based bandwidth, there exists a densityfor which the ratio of expected L1 error over optimal L1 error tends to infinity. Thus, the problem of tuning the variable bandwidth in an optimal manner is ``too hard''. Moreover, from the class of counterexamples exhibited in the paper, it appears thatplacing conditions on the densities (monotonicity, convexity, smoothness) does not help.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let $Q$ be a suitable real function on $C$. An $n$-Fekete set corresponding to $Q$ is a subset ${Z_{n1}},\dotsb, Z_{nn}}$ of $C$ which maximizes the expression $\Pi^n_i_{

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We continue the development of a method for the selection of a bandwidth or a number of design parameters in density estimation. We provideexplicit non-asymptotic density-free inequalities that relate the $L_1$ error of the selected estimate with that of the best possible estimate,and study in particular the connection between the richness of the classof density estimates and the performance bound. For example, our methodallows one to pick the bandwidth and kernel order in the kernel estimatesimultaneously and still assure that for {\it all densities}, the $L_1$error of the corresponding kernel estimate is not larger than aboutthree times the error of the estimate with the optimal smoothing factor and kernel plus a constant times $\sqrt{\log n/n}$, where $n$ is the sample size, and the constant only depends on the complexity of the family of kernels used in the estimate. Further applications include multivariate kernel estimates, transformed kernel estimates, and variablekernel estimates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We prove upper pointwise estimates for the Bergman kernel of the weighted Fock space of entire functions in $L^{2}(e^{-2\phi}) $ where $\phi$ is a subharmonic function with $\Delta\phi$ a doubling measure. We derive estimates for the canonical solution operator to the inhomogeneous Cauchy-Riemann equation and we characterize the compactness of this operator in terms of $\Delta\phi$.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This comment corrects the errors in the estimation process that appear in Martins (2001). The first error is in the parametric probit estimation, as the previously presented results do not maximize the log-likelihood function. In the global maximum more variables become significant. As for the semiparametric estimation method, the kernel function used in Martins (2001) can take on both positive and negative values, which implies that the participation probability estimates may be outside the interval [0,1]. We have solved the problem by applying local smoothing in the kernel estimation, as suggested by Klein and Spady (1993).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a real data set of claims amounts where costs related to damage are recorded separately from those related to medical expenses. Only claims with positive costs are considered here. Two approaches to density estimation are presented: a classical parametric and a semi-parametric method, based on transformation kernel density estimation. We explore the data set with standard univariate methods. We also propose ways to select the bandwidth and transformation parameters in the univariate case based on Bayesian methods. We indicate how to compare the results of alternative methods both looking at the shape of the overall density domain and exploring the density estimates in the right tail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we establish lower and upper Gaussian bounds for the probability density of the mild solution to the stochastic heat equation with multiplicative noise and in any space dimension. The driving perturbation is a Gaussian noise which is white in time with some spatially homogeneous covariance. These estimates are obtained using tools of the Malliavin calculus. The most challenging part is the lower bound, which is obtained by adapting a general method developed by Kohatsu-Higa to the underlying spatially homogeneous Gaussian setting. Both lower and upper estimates have the same form: a Gaussian density with a variance which is equal to that of the mild solution of the corresponding linear equation with additive noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents value added estimates for the Italian regions, in benchmark years from 1891 until 1951, which are linked to those from official figures available from 1971 in order to offer a long-term picture. Sources and methodology are documented and discussed, whilst regional activity rates and productivity are also presented and compared. Thus some questions are briefly reconsidered: the origins and extent of the north-south divide, the role of migration and regional policy in shaping the pattern of regional inequality, the importance of social capital, and the positioning of Italy in the international debate on regional convergence, where it stands out for the long run persistence of its disparities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove two-sided inequalities between the integral moduli of smoothness of a function on R d[superscript] / T d[superscript] and the weighted tail-type integrals of its Fourier transform/series. Sharpness of obtained results in particular is given by the equivalence results for functions satisfying certain regular conditions. Applications include a quantitative form of the Riemann-Lebesgue lemma as well as several other questions in approximation theory and the theory of function spaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the work of Mateu, Orobitg, Pérez and Verdera, who proved inequalities of the form $T_*f\lesssim M(Tf)$ or $T_*f\lesssim M^2(Tf)$ for certain singular integral operators $T$, such as the Hilbert or the Beurling transforms, we study the possibility of establishing this type of control for the Cauchy transform along a Lipschitz graph. We show that this is not possible in general, and we give a partial positive result when the graph is substituted by a Jordan curve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the optimality in L2 of a variant of the Incomplete Discontinuous Galerkin Interior Penalty method (IIPG) for second order linear elliptic problems. We prove optimal estimate, in two and three dimensions, for the lowest order case under suitable regularity assumptions on the data and on the mesh. We also provide numerical evidence, in one dimension, of the necessity of the regularity assumptions.