60 resultados para infinite dimensional differential geometry

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the role of horospheres in Integral Geometry and Differential Geometry. In particular we study envelopes of families of horocycles by means of “support maps”. We define invariant “linear combinations” of support maps or curves. Finally we obtain Gauss-Bonnet type formulas and Chern-Lashof type inequalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a unified geometric framework for describing both the Lagrangian and Hamiltonian formalisms of regular and non-regular time-dependent mechanical systems, which is based on the approach of Skinner and Rusk (1983). The dynamical equations of motion and their compatibility and consistency are carefully studied, making clear that all the characteristics of the Lagrangian and the Hamiltonian formalisms are recovered in this formulation. As an example, it is studied a semidiscretization of the nonlinear wave equation proving the applicability of the proposed formalism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) | if uniformly controlled | will quantify contractivity (limit expansivity) of the flow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence theory for parabolic variational inequalities in weighted L2 spaces with respect to excessive measures associated with a transition semigroup. We characterize the value function of optimal stopping problems for finite and infinite dimensional diffusions as a generalized solution of such a variational inequality. The weighted L2 setting allows us to cover some singular cases, such as optimal stopping for stochastic equations with degenerate diffusion coeficient. As an application of the theory, we consider the pricing of American-style contingent claims. Among others, we treat the cases of assets with stochastic volatility and with path-dependent payoffs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional Data Analysis (FDA) deals with samples where a whole function is observedfor each individual. A particular case of FDA is when the observed functions are densityfunctions, that are also an example of infinite dimensional compositional data. In thiswork we compare several methods for dimensionality reduction for this particular typeof data: functional principal components analysis (PCA) with or without a previousdata transformation and multidimensional scaling (MDS) for diferent inter-densitiesdistances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (householdsincome distributions)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kuranishi's fundamental result (1962) associates to any compact complex manifold X&sub&0&/sub& a finite-dimensional analytic space which has to be thought of as a local moduli space of complex structures close to X&sub&0&/sub&. In this paper, we give an analogous statement for Levi-flat CR manifolds fibering properly over the circle by describing explicitely an infinite-dimensional Kuranishi type local moduli space of Levi-flat CR structures. We interpret this result in terms of Kodaira-Spencer deformation theory making clear the likenesses as well as the differences with the classical case. The article ends with applications and examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider an insider with privileged information thatis affected by an independent noise vanishing as the revelation timeapproaches. At this time, information is available to every trader. Ourfinancial markets are based on Wiener space. In probabilistic terms weobtain an infinite dimensional extension of Jacod s theorem to covercases of progressive enlargement of filtrations. The application ofthis result gives the semimartingale decomposition of the originalWiener process under the progressively enlarged filtration. As anapplication we prove that if the rate at which the additional noise inthe insider s information vanishes is slow enough then there is noarbitrage and the additional utility of the insider is finite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[eng] We consider a discrete time, pure exchange infinite horizon economy with two or more consumers and at least one concumption good per period. Within the framework of decentralized mechanisms, we show that for a given consumption trade at any period of time, say at time one, the consumers will need, in general, an infinite dimensional (informational) space to identigy such a trade as an intemporal Walrasian one. However, we show and characterize a set of enviroments where the Walrasian trades at each period of time can be achieved as the equilibrium trades of a sequence of decentralized competitive mechanisms, using only both current prices and quantities to coordinate decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study under which circumstances there exists a general change of gross variables that transforms any FokkerPlanck equation into another of the OrnsteinUhlenbeck class that, therefore, has an exact solution. We find that any FokkerPlanck equation will be exactly solvable by means of a change of gross variables if and only if the curvature tensor and the torsion tensor associated with the diffusion is zero and the transformed drift is linear. We apply our criteria to the Kubo and Gompertz models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Hamiltonian formulation of predictive relativistic systems, the canonical coordinates cannot be the physical positions. The relation between them is given by the individuality differential equations. However, due to the arbitrariness in the choice of Cauchy data, there is a wide family of solutions for these equations. In general, those solutions do not satisfy the condition of constancy of velocities moduli, and therefore we have to reparametrize the world lines into the proper time. We derive here a condition on the Cauchy data for the individuality equations which ensures the constancy of the velocities moduli and makes the reparametrization unnecessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The infinitesimal transformations that leave invariant a two-covariant symmetric tensor are studied. The interest of these symmetry transformations lays in the fact that this class of tensors includes the energy-momentum and Ricci tensors. We find that in most cases the class of infinitesimal generators of these transformations is a finite dimensional Lie algebra, but in some cases exhibiting a higher degree of degeneracy, this class is infinite dimensional and may fail to be a Lie algebra. As an application, we study the Ricci collineations of a type B warped spacetime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We give a sufficient condition for a set of block subspaces in an infinite-dimensional Banach space to be weakly Ramsey. Using this condition we prove that in the Levy-collapse of a Mahlo cardinal, every projective set is weakly Ramsey. This, together with a construction of W. H. Woodin, is used to show that the Axiom of Projective Determinacy implies that every projective set is weakly Ramsey. In the case of co we prove similar results for a stronger Ramsey property. And for hereditarily indecomposable spaces we show that the Axiom of Determinacy plus the Axiom of Dependent Choices imply that every set is weakly Ramsey. These results are the generalizations to the class of projective sets of some theorems from W. T. Gowers, and our paper "Weakly Ramsey sets in Banach spaces."