58 resultados para dynamical scaling
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
compatible with the usual nonlocal model governed by surface tension that results from a macroscopic description. To explore this discrepancy, we exhaustively analyze numerical integrations of a phase-field model with dichotomic columnar disorder. We find that two distinct behaviors are possible depending on the capillary contrast between the two values of disorder. In a high-contrast case, where interface evolution is mainly dominated by the disorder, an inherent anomalous scaling is always observed. Moreover, in agreement with experimental work, the interface motion has to be described through a local model. On the other hand, in a lower-contrast case, the interface is dominated by interfacial tension and can be well modeled by a nonlocal model. We have studied both spontaneous and forced-flow imbibition situations, giving a complete set of scaling exponents in each case, as well as a comparison to the experimental results.
Resumo:
The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the longvelocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f (c)~exp (−cⁿ), with n ≈1.2, regarding less the fragmentation mechanisms
Resumo:
The liquid-liquid critical point scenario of water hypothesizes the existence of two metastable liq- uid phases low-density liquid (LDL) and high-density liquid (HDL) deep within the supercooled region. The hypothesis originates from computer simulations of the ST2 water model, but the stabil- ity of the LDL phase with respect to the crystal is still being debated. We simulate supercooled ST2 water at constant pressure, constant temperature, and constant number of molecules N for N ≤ 729 and times up to 1 μs. We observe clear differences between the two liquids, both structural and dynamical. Using several methods, including finite-size scaling, we confirm the presence of a liquid-liquid phase transition ending in a critical point. We find that the LDL is stable with respect to the crystal in 98% of our runs (we perform 372 runs for LDL or LDL-like states), and in 100% of our runs for the two largest system sizes (N = 512 and 729, for which we perform 136 runs for LDL or LDL-like states). In all these runs, tiny crystallites grow and then melt within 1 μs. Only for N ≤ 343 we observe six events (over 236 runs for LDL or LDL-like states) of spontaneous crystal- lization after crystallites reach an estimated critical size of about 70 ± 10 molecules.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
Report for the scientific sojourn carried out at the Department of Structure and Constituents of Matter during 2007.The main focus of the work was on phenomena related to nano-electromechanical processes that take place on a cellular level. Additionally, it has also been performed independent work related to charge and energy transfer in bio molecules, energy transfer in coupled spin systems as well as electrodynamics of nonlinear metamaterials.
Resumo:
We analyze the statistics of rain-event sizes, rain-event durations, and dry-spell durations in a network of 20 rain gauges scattered in an area situated close to the NW Mediterranean coast. Power-law distributions emerge clearly for the dryspell durations, with an exponent around 1.50 ± 0.05, although for event sizes and durations the power-law ranges are rather limited, in some cases. Deviations from power-law behavior are attributed to finite-size effects. A scaling analysis helps to elucidate the situation, providing support for the existence of scale invariance in these distributions. It is remarkable that rain data of not very high resolution yield findings in agreement with self-organized critical phenomena.
Resumo:
Given positive integers n and m, we consider dynamical systems in which n copies of a topological space is homeomorphic to m copies of that same space. The universal such system is shown to arise naturally from the study of a C*-algebra we denote by Om;n, which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm;n, a process meant to transform the generating set of partial isometries of Lm;n into a tame set. Describing Om;n as the crossed-product of the universal (m; n) -dynamical system by a partial action of the free group Fm+n, we show that Om;n is not exact when n and m are both greater than or equal to 2, but the corresponding reduced crossed-product, denoted Or m;n, is shown to be exact and non-nuclear. Still under the assumption that m; n &= 2, we prove that the partial action of Fm+n is topologically free and that Or m;n satisfies property (SP) (small projections). We also show that Or m;n admits no finite dimensional representations. The techniques developed to treat this system include several new results pertaining to the theory of Fell bundles over discrete groups.
Resumo:
We explore in depth the validity of a recently proposed scaling law for earthquake inter-event time distributions in the case of the Southern California, using the waveform cross-correlation catalog of Shearer et al. Two statistical tests are used: on the one hand, the standard two-sample Kolmogorov-Smirnov test is in agreement with the scaling of the distributions. On the other hand, the one-sample Kolmogorov-Smirnov statistic complemented with Monte Carlo simulation of the inter-event times, as done by Clauset et al., supports the validity of the gamma distribution as a simple model of the scaling function appearing on the scaling law, for rescaled inter-event times above 0.01, except for the largest data set (magnitude greater than 2). A discussion of these results is provided.
Resumo:
The speed of front propagation in fractals is studied by using (i) the reduction of the reaction-transport equation into a Hamilton-Jacobi equation and (ii) the local-equilibrium approach. Different equations proposed for describing transport in fractal media, together with logistic reaction kinetics, are considered. Finally, we analyze the main features of wave fronts resulting from this dynamic process, i.e., why they are accelerated and what is the exact form of this acceleration
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
A variational method for Hamiltonian systems is analyzed. Two different variationalcharacterization for the frequency of nonlinear oscillations is also suppliedfor non-Hamiltonian systems
Resumo:
In this paper we consider an insider with privileged information thatis affected by an independent noise vanishing as the revelation timeapproaches. At this time, information is available to every trader. Ourfinancial markets are based on Wiener space. In probabilistic terms weobtain an infinite dimensional extension of Jacod s theorem to covercases of progressive enlargement of filtrations. The application ofthis result gives the semimartingale decomposition of the originalWiener process under the progressively enlarged filtration. As anapplication we prove that if the rate at which the additional noise inthe insider s information vanishes is slow enough then there is noarbitrage and the additional utility of the insider is finite.