121 resultados para dynamic geometric calibration
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Remote sensing spatial, spectral, and temporal resolutions of images, acquired over a reasonably sized image extent, result in imagery that can be processed to represent land cover over large areas with an amount of spatial detail that is very attractive for monitoring, management, and scienti c activities. With Moore's Law alive and well, more and more parallelism is introduced into all computing platforms, at all levels of integration and programming to achieve higher performance and energy e ciency. Being the geometric calibration process one of the most time consuming processes when using remote sensing images, the aim of this work is to accelerate this process by taking advantage of new computing architectures and technologies, specially focusing in exploiting computation over shared memory multi-threading hardware. A parallel implementation of the most time consuming process in the remote sensing geometric correction has been implemented using OpenMP directives. This work compares the performance of the original serial binary versus the parallelized implementation, using several multi-threaded modern CPU architectures, discussing about the approach to nd the optimum hardware for a cost-e ective execution.
Resumo:
El principal objectiu del projecte era desenvolupar millores conceptuals i metodològiques que permetessin una millor predicció dels canvis en la distribució de les espècies (a una escala de paisatge) derivats de canvis ambientals en un context dominat per pertorbacions. En un primer estudi, vàrem comparar l'eficàcia de diferents models dinàmics per a predir la distribució de l'hortolà (Emberiza hortulana). Els nostres resultats indiquen que un model híbrid que combini canvis en la qualitat de l'hàbitat, derivats de canvis en el paisatge, amb un model poblacional espacialment explícit és una aproximació adequada per abordar canvis en la distribució d'espècies en contextos de dinàmica ambiental elevada i una capacitat de dispersió limitada de l'espècie objectiu. En un segon estudi abordarem la calibració mitjançant dades de seguiment de models de distribució dinàmics per a 12 espècies amb preferència per hàbitats oberts. Entre les conclusions extretes destaquem: (1) la necessitat de que les dades de seguiment abarquin aquelles àrees on es produeixen els canvis de qualitat; (2) el biaix que es produeix en la estimació dels paràmetres del model d'ocupació quan la hipòtesi de canvi de paisatge o el model de qualitat d'hàbitat són incorrectes. En el darrer treball estudiarem el possible impacte en 67 espècies d’ocells de diferents règims d’incendis, definits a partir de combinacions de nivells de canvi climàtic (portant a un augment esperat de la mida i freqüència d’incendis forestals), i eficiència d’extinció per part dels bombers. Segons els resultats dels nostres models, la combinació de factors antropogènics del regim d’incendis, tals com l’abandonament rural i l’extinció, poden ser més determinants per als canvis de distribució que els efectes derivats del canvi climàtic. Els productes generats inclouen tres publicacions científiques, una pàgina web amb resultats del projecte i una llibreria per a l'entorn estadístic R.
Resumo:
In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.
Resumo:
We consider a dynamic model where traders in each period are matched randomly into pairs who then bargain about the division of a fixed surplus. When agreement is reached the traders leave the market. Traders who do not come to an agreement return next period in which they will be matched again, as long as their deadline has not expired yet. New traders enter exogenously in each period. We assume that traders within a pair know each other's deadline. We define and characterize the stationary equilibrium configurations. Traders with longer deadlines fare better than traders with short deadlines. It is shown that the heterogeneity of deadlines may cause delay. It is then shown that a centralized mechanism that controls the matching protocol, but does not interfere with the bargaining, eliminates all delay. Even though this efficient centralized mechanism is not as good for traders with long deadlines, it is shown that in a model where all traders can choose which mechanism to
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We show how to calibrate CES production and utility functions when indirect taxation affecting inputs and consumption is present. These calibrated functions can then be used in computable general equilibrium models. Taxation modifies the standard calibration procedures since any taxed good has two associated prices and a choice of reference value units has to be made. We also provide an example of computer code to solve the calibration of CES utilities under two alternate normalizations. To our knowledge, this paper fills a methodological gap in the CGE literature.
Resumo:
Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Since conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. Monte Carlo results show that the estimator performs well in comparison to other estimators that have been proposed for estimation of general DLV models.
Resumo:
In the literature on risk, one generally assume that uncertainty is uniformly distributed over the entire working horizon, when the absolute risk-aversion index is negative and constant. From this perspective, the risk is totally exogenous, and thus independent of endogenous risks. The classic procedure is "myopic" with regard to potential changes in the future behavior of the agent due to inherent random fluctuations of the system. The agent's attitude to risk is rigid. Although often criticized, the most widely used hypothesis for the analysis of economic behavior is risk-neutrality. This borderline case must be envisaged with prudence in a dynamic stochastic context. The traditional measures of risk-aversion are generally too weak for making comparisons between risky situations, given the dynamic �complexity of the environment. This can be highlighted in concrete problems in finance and insurance, context for which the Arrow-Pratt measures (in the small) give ambiguous.
Resumo:
The objective of this paper is to re-evaluate the attitude to effort of a risk-averse decision-maker in an evolving environment. In the classic analysis, the space of efforts is generally discretized. More realistic, this new approach emploies a continuum of effort levels. The presence of multiple possible efforts and performance levels provides a better basis for explaining real economic phenomena. The traditional approach (see, Laffont, J. J. & Tirole, J., 1993, Salanie, B., 1997, Laffont, J.J. and Martimort, D, 2002, among others) does not take into account the potential effect of the system dynamics on the agent's behavior to effort over time. In the context of a Principal-agent relationship, not only the incentives of the Principal can determine the private agent to allocate a good effort, but also the evolution of the dynamic system. The incentives can be ineffective when the environment does not incite the agent to invest a good effort. This explains why, some effici
Resumo:
We present an invariant of a three dimensional manifold with a framed knot in it based on the Reidemeister torsion of an acyclic complex of Euclidean geometric origin. To show its nontriviality, we calculate the invariant for some framed (un)knots in lens spaces. An important feature of our work is that we are not using any nontrivial representation of the manifold fundamental group or knot group.
Resumo:
The demand for computational power has been leading the improvement of the High Performance Computing (HPC) area, generally represented by the use of distributed systems like clusters of computers running parallel applications. In this area, fault tolerance plays an important role in order to provide high availability isolating the application from the faults effects. Performance and availability form an undissociable binomial for some kind of applications. Therefore, the fault tolerant solutions must take into consideration these two constraints when it has been designed. In this dissertation, we present a few side-effects that some fault tolerant solutions may presents when recovering a failed process. These effects may causes degradation of the system, affecting mainly the overall performance and availability. We introduce RADIC-II, a fault tolerant architecture for message passing based on RADIC (Redundant Array of Distributed Independent Fault Tolerance Controllers) architecture. RADIC-II keeps as maximum as possible the RADIC features of transparency, decentralization, flexibility and scalability, incorporating a flexible dynamic redundancy feature, allowing to mitigate or to avoid some recovery side-effects.
Resumo:
This paper shows that tourism specialisation can help to explain the observed high growth rates of small countries. For this purpose, two models of growth and trade are constructed to represent the trade relations between two countries. One of the countries is large, rich, has an own source of sustained growth and produces a tradable capital good. The other is a small poor economy, which does not have an own engine of growth and produces tradable tourism services. The poor country exports tourism services to and imports capital goods from the rich economy. In one model tourism is a luxury good, while in the other the expenditure elasticity of tourism imports is unitary. Two main results are obtained. In the long run, the tourism country overcomes decreasing returns and permanently grows because its terms of trade continuously improve. Since the tourism sector is relatively less productive than the capital good sector, tourism services become relatively scarcer and hence more expensive than the capital good. Moreover, along the transition the growth rate of the tourism economy holds well above the one of the rich country for a long time. The growth rate differential between countries is particularly high when tourism is a luxury good. In this case, there is a faster increase in the tourism demand. As a result, investment of the small economy is boosted and its terms of trade highly improve.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.
Dynamic stackelberg game with risk-averse players: optimal risk-sharing under asymmetric information
Resumo:
The objective of this paper is to clarify the interactive nature of the leader-follower relationship when both players are endogenously risk-averse. The analysis is placed in the context of a dynamic closed-loop Stackelberg game with private information. The case of a risk-neutral leader, very often discussed in the literature, is only a borderline possibility in the present study. Each player in the game is characterized by a risk-averse type which is unknown to his opponent. The goal of the leader is to implement an optimal incentive compatible risk-sharing contract. The proposed approach provides a qualitative analysis of adaptive risk behavior profiles for asymmetrically informed players in the context of dynamic strategic interactions modelled as incentive Stackelberg games.