21 resultados para duplication
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Genomic plasticity of human chromosome 8p23.1 region is highly influenced by two groups of complex segmental duplications (SDs), termed REPD and REPP, that mediate different kinds of rearrangements. Part of the difficulty to explain the wide range of phenotypes associated with 8p23.1 rearrangements is that REPP and REPD are not yet well characterized, probably due to their polymorphic status. Here, we describe a novel primate-specific gene family, named FAM90A (family with sequence similarity 90), found within these SDs. According to the current human reference sequence assembly, the FAM90A family includes 24 members along 8p23.1 region plus a single member on chromosome 12p13.31, showing copy number variation (CNV) between individuals. These genes can be classified into subfamilies I and II, which differ in their upstream and 5′-untranslated region sequences, but both share the same open reading frame and are ubiquitously expressed. Sequence analysis and comparative fluorescence in situ hybridization studies showed that FAM90A subfamily II suffered a big expansion in the hominoid lineage, whereas subfamily I members were likely generated sometime around the divergence of orangutan and African great apes by a fusion process. In addition, the analysis of the Ka/Ks ratios provides evidence of functional constraint of some FAM90A genes in all species. The characterization of the FAM90A gene family contributes to a better understanding of the structural polymorphism of the human 8p23.1 region and constitutes a good example of how SDs, CNVs and rearrangements within themselves can promote the formation of new gene sequences with potential functional consequences.
Resumo:
We consider the problem of allocating an infinitely divisible commodity among a group of agents with single-peaked preferences. A rule that has played a central role in the analysis of the problem is the so-called uniform rule. Chun (2001) proves that the uniform rule is the only rule satisfying Pareto optimality, no-envy, separability, and continuity (with respect to the social endowment). We obtain an alternative characterization by using a weak replication-invariance condition, called duplication-invariance, instead of continuity. Furthermore, we prove that Pareto optimality, equal division lower bound, and separability imply no-envy. Using this result, we strengthen one of Chun's (2001) characterizations of the uniform rule by showing that the uniform rule is the only rule satisfying Pareto optimality, equal división lower bound, separability, and either continuity or duplication-invariance.
Resumo:
Estudi realitzat a partir d’una estada a la Institut J.W. Jenkinson Laboratory for Evolution and Development of the University of Oxford, Regne Unit, entre 2010 i 2012. He estat membre del laboratori del Professor Peter W.H. Holland com a becari post-doctoral Beatriu de Pinós des de setembre de 2010 al setembre de 2012. El nostre projecte de recerca se centra en l'anàlisi genòmic comparatiu del Regne Animal, tot explorant el contingut dels genomes a través de totes les branques de l'arbre dels animals. Totes les referències a les meves publicacions durant aquest post-doc es poden trobar a http://about.me/jordi_paps. Crec que el nombre i la qualitat dels resultats del meu post-doc, un total de 8 publicacions incloent dos articles a la prestigiosa revista Nature, són prova de l'èxit d'aquest post-doc. Prof Peter W. H. Holland (Departament de Zoologia de la Universitat d'Oxford) i jo som coautors de tres articles de genòmica comparativa, resultats directes d'aquest projecte: 1) comparació de families gèniques entre vertebrats invertebrats (Briefings in Functional Genomics), 2) el genoma de l'ostra (publicat a la revista Nature), i 3) els genomes de 6 platihelmints paràsits (acceptat també a Nature). A més, tenim altres 2 treballs en preparació. Un d'ells analitza l'evolució, expressió i funció dels gens Hox al a la tènia Hymenolepis. El perfil fi d'aquests gens clau del desenvolupament esclareix els canvis d'estil de vida dels organismes. A més, durant aquest últim post-doc he participat en diverses col•laboracions, incloent anàlisi de gens d'envelliment a cucs plans, un estudi sobre la filogènia del grup Gastrotricha, una revisió de l'evolució phylum Platyhelminthes, així com un capítol d'un llibre sobre l'evolució dels animals bilaterals. Finalment, gràcies a la beca Beatriu de Pinós, el Prof. Peter W.H. Holland m'ha convidat a formar part del seu equip com un investigador post-doctoral en el seu projecte ERC Advance actual sobre duplicacions genòmiques.
Resumo:
We present building blocks for algorithms for the efficient reduction of square factor, i.e. direct repetitions in strings. So the basic problem is this: given a string, compute all strings that can be obtained by reducing factors of the form zz to z. Two types of algorithms are treated: an offline algorithm is one that can compute a data structure on the given string in advance before the actual search for the square begins; in contrast, online algorithms receive all input only at the time when a request is made. For offline algorithms we treat the following problem: Let u and w be two strings such that w is obtained from u by reducing a square factor zz to only z. If we further are given the suffix table of u, how can we derive the suffix table for w without computing it from scratch? As the suffix table plays a key role in online algorithms for the detection of squares in a string, this derivation can make the iterated reduction of squares more efficient. On the other hand, we also show how a suffix array, used for the offline detection of squares, can be adapted to the new string resulting from the deletion of a square. Because the deletion is a very local change, this adaption is more eficient than the computation of the new suffix array from scratch.
Resumo:
Arising from either retrotransposition or genomic duplication of functional genes, pseudogenes are “genomic fossils” valuable for exploring the dynamics and evolution of genes and genomes. Pseudogene identification is an important problem in computational genomics, and is also critical for obtaining an accurate picture of a genome’s structure and function. However, no consensus computational scheme for defining and detecting pseudogenes has been developed thus far. As part of the ENCyclopedia Of DNA Elements (ENCODE) project, we have compared several distinct pseudogene annotation strategies and found that different approaches and parameters often resulted in rather distinct sets of pseudogenes. We subsequently developed a consensus approach for annotating pseudogenes (derived from protein coding genes) in the ENCODE regions, resulting in 201 pseudogenes, two-thirds of which originated from retrotransposition. A survey of orthologs for these pseudogenes in 28 vertebrate genomes showed that a significant fraction (∼80%) of the processed pseudogenes are primate-specific sequences, highlighting the increasing retrotransposition activity in primates. Analysis of sequence conservation and variation also demonstrated that most pseudogenes evolve neutrally, and processed pseudogenes appear to have lost their coding potential immediately or soon after their emergence. In order to explore the functional implication of pseudogene prevalence, we have extensively examined the transcriptional activity of the ENCODE pseudogenes. We performed systematic series of pseudogene-specific RACE analyses. These, together with complementary evidence derived from tiling microarrays and high throughput sequencing, demonstrated that at least a fifth of the 201 pseudogenes are transcribed in one or more cell lines or tissues.
Resumo:
It is generally accepted that the extent of phenotypic change between human and great apes is dissonant with the rate of molecular change. Between these two groups, proteins are virtually identical, cytogenetically there are few rearrangements that distinguish ape-human chromosomes, and rates of single-base-pair change and retrotransposon activity have slowed particularly within hominid lineages when compared to rodents or monkeys. Studies of gene family evolution indicate that gene loss and gain are enriched within the primate lineage. Here, we perform a systematic analysis of duplication content of four primate genomes (macaque, orang-utan, chimpanzee and human) in an effort to understand the pattern and rates of genomic duplication during hominid evolution. We find that the ancestral branch leading to human and African great apes shows the most significant increase in duplication activity both in terms of base pairs and in terms of events. This duplication acceleration within the ancestral species is significant when compared to lineage-specific rate estimates even after accounting for copy-number polymorphism and homoplasy. We discover striking examples of recurrent and independent gene-containing duplications within the gorilla and chimpanzee that are absent in the human lineage. Our results suggest that the evolutionary properties of copy-number mutation differ significantly from other forms of genetic mutation and, in contrast to the hominid slowdown of single-base-pair mutations, there has been a genomic burst of duplication activity at this period during human evolution.
Resumo:
Background: Kabuki syndrome (KS) is a multiple congenital anomaly syndrome characterized by specific facial features, mild to moderate mental retardation, postnatal growth delay, skeletal abnormalities, and unusual dermatoglyphic patterns with prominent fingertip pads. A 3.5 Mb duplication at 8p23.1-p22 was once reported as a specific alteration in KS but has not been confirmed in other patients. The molecular basis of KS remains unknown. Methods: We have studied 16 Spanish patients with a clinical diagnosis of KS or KS-like to search for genomic imbalances using genome-wide array technologies. All putative rearrangements were confirmed by FISH, microsatellite markers and/or MLPA assays, which also determined whether the imbalance was de novo or inherited. Results: No duplication at 8p23.1-p22 was observed in our patients. We detected complex rearrangements involving 2q in two patients with Kabuki-like features: 1) a de novo inverted duplication of 11 Mb with a 4.5 Mb terminal deletion, and 2) a de novo 7.2 Mb-terminal deletion in a patient with an additional de novo 0.5 Mb interstitial deletion in 16p. Additional copy number variations (CNV), either inherited or reported in normal controls, were identified and interpreted as polymorphic variants. No specific CNV was significantly increased in the KS group. Conclusion: Our results further confirmed that genomic duplications of 8p23 region are not a common cause of KS and failed to detect other recurrent rearrangement causing this disorder. The detection of two patients with 2q37 deletions suggests that there is a phenotypic overlap between the two conditions, and screening this region in the Kabuki-like patients should be considered.
Resumo:
Background: The RPS4 gene codifies for ribosomal protein S4, a very well-conserved protein present in all kingdoms. In primates, RPS4 is codified by two functional genes located on both sex chromosomes: the RPS4X and RPS4Y genes. In humans, RPS4Y is duplicated and the Y chromosome therefore carries a third functional paralog: RPS4Y2, which presents a testis-specific expression pattern. Results: DNA sequence analysis of the intronic and cDNA regions of RPS4Y genes from species covering the entire primate phylogeny showed that the duplication event leading to the second Y-linked copy occurred after the divergence of New World monkeys, about 35 million years ago. Maximum likelihood analyses of the synonymous and non-synonymous substitutions revealed that positive selection was acting on RPS4Y2 gene in the human lineage, which represents the first evidence of positive selection on a ribosomal protein gene. Putative positive amino acid replacements affected the three domains of the protein: one of these changes is located in the KOW protein domain and affects the unique invariable position of this motif, and might thus have a dramatic effect on the protein function.Conclusion: Here, we shed new light on the evolutionary history of RPS4Y gene family, especially on that of RPS4Y2. The results point that the RPS4Y1 gene might be maintained to compensate gene dosage between sexes, while RPS4Y2 might have acquired a new function, at least in the lineage leading to humans.
Resumo:
Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems.
Resumo:
Background: The degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order t o elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion. Results: HpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD) and ultra violet-visible (UV-Vis) spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT) with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was achieved exclusively by evolutionary modulation of non-cysteine amino acid positions. Conclusion: The Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.
Resumo:
Background: Hox and ParaHox gene clusters are thought to have resulted from the duplication of a ProtoHox gene cluster early in metazoan evolution. However, the origin and evolution of the other genes belonging to the extended Hox group of homeobox-containing genes, that is, Mox and Evx, remains obscure. We constructed phylogenetic trees with mouse, amphioxus and Drosophila extended Hox and other related Antennapedia-type homeobox gene sequences and analyzed the linkage data available for such genes.Results: We claim that neither Mox nor Evx is a Hox or ParaHox gene. We propose a scenariothat reconciles phylogeny with linkage data, in which an Evx/Mox ancestor gene linked to aProtoHox cluster was involved in a segmental tandem duplication event that generated an arrayof all Hox-like genes, referred to as the `coupled¿ cluster. A chromosomal breakage within thiscluster explains the current composition of the extended Hox cluster (with Evx, Hox and Moxgenes) and the ParaHox cluster.Conclusions: Most studies dealing with the origin and evolution of Hox and ParaHox clustershave not included the Hox-related genes Mox and Evx. Our phylogenetic analyses and theavailable linkage data in mammalian genomes support an evolutionary scenario in which anancestor of Evx and Mox was linked to the ProtoHox cluster, and that a tandem duplication of alarge genomic region early in metazoan evolution generated the Hox and ParaHox clusters, plusthe cluster-neighbors Evx and Mox. The large `coupled¿ Hox-like cluster EvxHox/MoxParaHox wassubsequently broken, thus grouping the Mox and Evx genes to the Hox clusters, and isolating theParaHox cluster.
Resumo:
Background: Chemoreception is a widespread mechanism that is involved in critical biologic processes, including individual and social behavior. The insect peripheral olfactory system comprises three major multigene families: the olfactory receptor (Or), the gustatory receptor (Gr), and the odorant-binding protein (OBP) families. Members of the latter family establish the first contact with the odorants, and thus constitute the first step in the chemosensory transduction pathway.Results: Comparative analysis of the OBP family in 12 Drosophila genomes allowed the identification of 595 genes that encode putative functional and nonfunctional members in extant species, with 43 gene gains and 28 gene losses (15 deletions and 13 pseudogenization events). The evolution of this family shows tandem gene duplication events, progressive divergence in DNA and amino acid sequence, and prevalence of pseudogenization events in external branches of the phylogenetic tree. We observed that the OBP arrangement in clusters is maintained across the Drosophila species and that purifying selection governs the evolution of the family; nevertheless, OBP genes differ in their functional constraints levels. Finally, we detect that the OBP repertoire evolves more rapidly in the specialist lineages of the Drosophila melanogaster group (D. sechellia and D. erecta) than in their closest generalists.Conclusion: Overall, the evolution of the OBP multigene family is consistent with the birth-and-death model. We also found that members of this family exhibit different functional constraints, which is indicative of some functional divergence, and that they might be involved in some of the specialization processes that occurred through the diversification of the Drosophila genus.
Resumo:
Structural variation has played an important role in the evolutionary restructuring of human and great ape genomes. Recent analyses have suggested that the genomes of chimpanzee and human have been particularly enriched for this form of genetic variation. Here, we set out to assess the extent of structural variation in the gorilla lineage by generating 10-fold genomic sequence coverage from a western lowland gorilla and integrating these data into a physical and cytogenetic framework of structural variation. We discovered and validated over 7665 structural changes within the gorilla lineage, including sequence resolution of inversions, deletions, duplications, and mobile element insertions. A comparison with human and other ape genomes shows that the gorilla genome has been subjected to the highest rate of segmental duplication. We show that both the gorilla and chimpanzee genomes have experienced independent yet convergent patterns of structural mutation that have not occurred in humans, including the formation of subtelomeric heterochromatic caps, the hyperexpansion of segmental duplications, and bursts of retroviral integrations. Our analysis suggests that the chimpanzee and gorilla genomes are structurally more derived than either orangutan or human genomes.
Resumo:
Estudi per verificar la hipòtesis plantejada inicial sobre que moltes empreses implementen nous sistemes integrals i segueixen efectuant tasques rutinàries sense aprofitar aquests nous sistemes, fent duplicitat de tasques i malgastant recursos informàtics.
Resumo:
Background: Protein domains represent the basic units in the evolution of proteins. Domain duplication and shuffling by recombination and fusion, followed by divergence are the most common mechanisms in this process. Such domain fusion and recombination events are predicted to occur only once for a given multidomain architecture. However, other scenarios may be relevant in the evolution of specific proteins, such as convergent evolution of multidomain architectures. With this in mind, we study glutaredoxin (GRX) domains, because these domains of approximately one hundred amino acids are widespread in archaea, bacteria and eukaryotes and participate in fusion proteins. GRXs are responsible for the reduction of protein disulfides or glutathione-protein mixed disulfides and are involved in cellular redox regulation, although their specific roles and targets are often unclear. Results: In this work we analyze the distribution and evolution of GRX proteins in archaea,bacteria and eukaryotes. We study over one thousand GRX proteins, each containing at least one GRX domain, from hundreds of different organisms and trace the origin and evolution of the GRX domain within the tree of life. Conclusion: Our results suggest that single domain GRX proteins of the CGFS and CPYC classes have, each, evolved through duplication and divergence from one initial gene that was present in the last common ancestor of all organisms. Remarkably, we identify a case of convergent evolution in domain architecture that involves the GRX domain. Two independent recombination events of a TRX domain to a GRX domain are likely to have occurred, which is an exception to the dominant mechanism of domain architecture evolution.