32 resultados para domestic water heater
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
L’aigua i l’energia formen un binomi indissociable. En relació al cicle de l’aigua, des de fa varies dècades s’han desenvolupat diferents formes per recuperar part de l’energia relacionada amb l’aigua, per exemple a partir de centrals hidroelèctriques. No obstant, l’ús d’aquesta aigua també porta associat un gran consum energètic, relacionat sobretot amb el transport, la distribució, la depuració, etc... La depuració d’aigües residuals porta associada una elevada demanda energètica (Obis et al.,2009). En termes energètics, tot i que la despesa elèctrica d’una EDAR varia en funció de diferents paràmetres com la configuració i la capacitat de la planta, la càrrega a tractar, etc... es podria considerar que el rati mig seria d’ aproximadament 0.5 KWh•m-3.Els principals costos d’explotació estan relacionats tant amb la gestió de fangs (28%) com amb el consum elèctric (25%) (50% tractament biològic). Tot i que moltes investigacions relacionades amb el tractament d’aigua residual estan encaminades en disminuir els costos d’operació, des de fa poques dècades s’està investigant la viabilitat de que l’aigua residual fins i tot sigui una font d’energia, canviant la perspectiva, i començant a veure l’aigua residual no com a una problemàtica sinó com a un recurs. Concretament s’estima que l’aigua domèstica conté 9.3 vegades més energia que la necessària per el seu tractament mitjançant processos aerobis (Shizas et al., 2004). Un dels processos més desenvolupats relacionats amb el tractament d’aigües residuals i la producció energètica és la digestió anaeròbia. No obstant, aquesta tecnologia permet el tractament d’altes càrregues de matèria orgànica generant un efluent ric en nitrogen que s’haurà de tractar amb altres tecnologies. Per altre banda, recentment s’està investigant una nova tecnologia relacionada amb el tractament d’aigües residuals i la producció energètica: les piles biològiques (microbial fuel cells, MFC). Aquesta tecnologia permet obtenir directament energia elèctrica a partir de la degradació de substrats biodegradables (Rabaey et al., 2005). Les piles biològiques, més conegudes com a Microbial Fuel Cells (acrònim en anglès, MFC), són una emergent tecnologia que està centrant moltes mirades en el camp de l’ investigació, i que es basa en la producció d’energia elèctrica a partir de substrats biodegradables presents en l’aigua residual (Logan., 2008). Els fonaments de les piles biològiques és molt semblant al funcionament d’una pila Daniell, en la qual es separa en dos compartiments la reacció d’oxidació (compartiment anòdic) i la de reducció (compartiment catòdic) amb l’objectiu de generar un determinat corrent elèctric. En aquest estudi, bàsicament es mostra la posada en marxa d'una pila biològica per a l'eliminació de matèria orgànica i nitrogen de les aigües residuals.
Resumo:
The domestic hot water cylinder incorporates encapsulated pcm placed in 57 vertical pipes. The use of PCM increases the thermal energy storage capacity of the cylinder and allows the use of low cost electricity during low peak periods. After experimental validation the numerical model developed in the project will be used to optimize the distribution of the pcm inside the water tank.
Resumo:
The Water Framework Directive (WFD) defines common objectives for water resources throughout the European Union (EU). Given this general approach to water preservation and water policy, the objective of this paper is to analyse whether common patterns of water consumption exist within Europe. In particular, our study uses two methods to reveal the reasons behind sectoral water use in all EU countries. The first method is based on an accounting indicator that calculates the water intensity of an economy as the sum of sectoral water intensities. The second method is a subsystem input‐output model that divides total water use into different income channels within the production system. The application uses data for the years 2005 and 2009 on water consumption in the production system of the 27 countries of the EU. From our analysis it emerges that EU countries are characterized by very different patterns of water consumption. In particular water consumption by the agriculture sector is extremely high in Central/Eastern Europe, relative to the rest of Europe. In most countries, the water used by the fuel, power and water sector is consumed to satisfy domestic final demand. However, our analysis shows that for some countries exports from this sector are an important driver of water consumption. Focusing on the agricultural sector, the decomposition analysis suggests that water usage in Mediterranean countries is mainly driven by final demand for, and exports of, agricultural products. In Central/Eastern Europe domestic final demand is the main driver of water consumption, but in this region the proportion of water use driven by demand for exports is increasing over time. Given these heterogeneous water consumption patterns, our analysis suggests that Mediterranean and Central/Eastern European countries should adopt specific water policies in order to achieve efficient levels of water consumption in the European Union. JEL codes: N5; C67 Keywords: Water use, Subsystem input–output model; Water intensity, European Union.
Resumo:
The objective of this paper is to analyse the economic impacts of alternative water policies implemented in the Spanish production system. The methodology uses two versions of the input-output price model: a competitive formulation and a mark-up formulation. The input-output framework evaluates the impact of water policy measures on production prices, consumption prices, intermediate water demand and private welfare. Our results show that a tax on the water used by sectors considerably reduces the intermediate water demand, and increases the production and consumption prices. On the other hand, according to Jevons' paradox, an improvement in technical efficiency, which leads to a reduction in the water requirements of all sectors and an increase in water production, increases the amount of water consumed. The combination of a tax on water and improved technical efficiency takes the pressure off prices and significantly reduces intermediate water demand. JEL Classification: C67 ; D57 ; Q25. Keywords: Production prices; Consumption prices; Water uses; Water policy; Water taxation.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This article investigates the history of land and water transformations in Matadepera, a wealthy suburb of metropolitan Barcelona. Analysis is informed by theories of political ecology and methods of environmental history; although very relevant, these have received relatively little attention within ecological economics. Empirical material includes communications from the City Archives of Matadepera (1919-1979), 17 interviews with locals born between 1913 and 1958, and an exhaustive review of grey historical literature. Existing water histories of Barcelona and its outskirts portray a battle against natural water scarcity, hard won by heroic engineers and politicians acting for the good of the community. Our research in Matadepera tells a very different story. We reveal the production of a highly uneven landscape and waterscape through fierce political and power struggles. The evolution of Matadepera from a small rural village to an elite suburb was anything but spontaneous or peaceful. It was a socio-environmental project well intended by landowning elites and heavily fought by others. The struggle for the control of water went hand in hand with the land and political struggles that culminated – and were violently resolved - in the Spanish Civil War. The displacement of the economic and environmental costs of water use from few to many continues to this day and is constitutive of Matadepera’s uneven and unsustainable landscape. By unravelling the relations of power that are inscribed in the urbanization of nature (Swyngedouw, 2004), we question the perceived wisdoms of contemporary water policy debates, particularly the notion of a natural scarcity that merits a technical or economic response. We argue that the water question is fundamentally a political question of environmental justice; it is about negotiating alternative visions of the future and deciding whose visions will be produced.
Resumo:
Piped water is used to remove hydration heat from concrete blocks during construction. In this paper we develop an approximate model for this process. The problem reduces to solving a one-dimensional heat equation in the concrete, coupled with a first order differential equation for the water temperature. Numerical results are presented and the effect of varying model parameters shown. An analytical solution is also provided for a steady-state constant heat generationmodel. This helps highlight the dependence on certain parameters and can therefore provide an aid in the design of cooling systems.
Resumo:
El proyecto consiste en el diseño de una instalación solar térmica para producción de agua caliente sanitaria (ACS) en un edificio de nueva construcción en la localidad de Mollerussa (Lleida). Se han estudiado las necesidades térmicas de ACS en atención a las características constructivas y funcionales del edificio, dando cumplimiento a la normativa vigente. Conocida la demanda energética esperada, se han analizado los datos climatológicos y de temperatura de red de agua fría propios del emplazamiento, y se ha propuesto un campo de captación compuesto por captadores planos y los distintos subconjuntos que componen la instalación: acumulación, transferencia térmica, trazado hidráulico, regulación y control, y energía auxiliar. Con ello se ha llevado a cabo una simulación energética mediante la herramienta TSOL, software de simulación solar recomendado por entidades de reconocido prestigio, para comprobar que se han alcanzado los objetivos del sistema propuesto. Por último, se ha realizado un estudio del beneficio medioambiental que supone la instalación proyectada, indicando el ahorro energético para el usuario y las toneladas equivalentes de dióxido de carbono evitadas.
Resumo:
Water reallocation between economic agents has been –and continues to be- the subject of a considerable amount of research. This paper proposes a method for evaluating how water is reallocated within the economy in response to changes in final demand and changes in the technical water needs of activities and consumers. The empirical application, which is for the Catalan economy, shows important asymmetries in the effects that exogenous inflows and changes in water technical requirements cause on water reallocation. In the process of water distribution, exogenous inflows mostly benefit agriculture and damage private consumers. On the other hand, increases in technical water requirements have negative effects on agriculture and positive effects on the other production activities. The results of the study suggest that agriculture is an important activity not only in terms of water distribution but also in terms of water reallocation due to changes in final demand and technical water needs. Keywords: Water reallocation, water distribution, exogenous shock, technical water needs.
Resumo:
The aim of this project is to evaluate the importance of submarine groundwater discharge sector in order to improve the water balance in Málaga-Granada region. The approach of this study arose from the the geology and the aquifers that indicate that there could be some discharge to the sea between Maro (Málaga) and Almuñécar (Granada) and the Andalusian’s Government and its Water Agence were really interested in evaluating it because there is a lot of population and few water available and the magnitude of groundwater discharge has generated controversy. Is well known that water is a scarce resource in this area and it’s very important for the society and for the environment. The legislation, the water policies, the knowledge of the aquifer and the geology, the water dynamics, the land use and the water perception in the society might help the management of this resource not just in Andalusia but in all the Mediterranean basin. The main objective is to evaluate the submarine groundwater discharge from the Alberquillas Aqufier to the sea by measuring 222Rn and Ra isotopes. Specific objectives have been established to achieve the main objective: A) Reveal the importance of water resources in the Mediterranean basin; B) Learn radiometric techniques for the study of groundwater discharge to the sea; C) Learn of sampling techniques of water samples for the measurement of Ra and Rn; D) Learn the techniques for measuring Ra (RaDeCC) and Rn (RAD7); E) Interpretation and discussion of results. During this semester, and in addition of the present study in Málaga- Granada region, the author has participated in the initial phase (sampling, analysis and interpretation of preliminary results) of other research projects focused on the study of submarine groundwater discharges through the use of Ra isotopes and 222Rn. These studies have been developed in different areas, including Alt Empordà (Roses and Sant Pere Pescador), Maresme with CMIMA’s group (Mediterranean Center for Marine and Environmental Research), Delta de l’Ebre, Peñíscola and Mallorca with the IMEDEA’s group (Mediterranean Institute for Advanced Studies).
Resumo:
Water scarcity is a long-standing problem in Catalonia, as there are significant differences in the spatial and temporal distribution of water through the territory. There has consequently been a debate for many years about whether the solution to water scarcity must be considered in terms of efficiency or equity, the role that the public sector must play and the role that market-based instruments should play in water management. The aim of this paper is to use a Computable General Equilibrium (CGE) model to analyze the advantages and disadvantages associated with different policy instruments, from both a supply and a demand viewpoint, which can be applied to water management in Catalonia. We also introduce an ecological sector in our CGE model, allowing us to analyze the environmental impact of the alternative policies simulated. The calibration of the exogenous variables of the CGE model is performed by using a Social Accounting Matrix (SAM) for the Catalan economy with 2001 data. The results suggest that taking into account the principle of sustainability of the resource, the policy debate between supply and demand in water policies is obsolete, and a new combination of policies is required to respect the different values associated with water. Keywords: Water Policies; Computable General Equilibrium Model; Economic Effects; Environmental Effects.
Resumo:
In this paper we address the complexity of the analysis of water use in relation to the issue of sustainability. In fact, the flows of water in our planet represent a complex reality which can be studied using many different perceptions and narratives referring to different scales and dimensions of analysis. For this reason, a quantitative analysis of water use has to be based on analytical methods that are semantically open: they must be able to define what we mean with the term “water” when crossing different scales of analysis. We propose here a definition of water as a resource that deal with the many services it provides to humans and ecosystems. WE argue that water can fulfil so many of them since the element has many characteristics that allow for the resource to be labelled with different attributes, depending on the end use –such as drinkable. Since the services for humans and the functions for ecosystems associated with water flows are defined on different scales but still interconnected it is necessary to organize our assessment of water use across different hierarchical levels. In order to do so we define how to approach the study of water use in the Societal Metabolism, by proposing the Water Metabolism, tganized in three levels: societal level, ecosystem level and global level. The possible end uses we distinguish for the society are: personal/physiological use, household use, economic use. Organizing the study of “water use” across all these levels increases the usefulness of the quantitative analysis and the possibilities of finding relevant and comparable results. To achieve this result, we adapted a method developed to deal with multi-level, multi-scale analysis - the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach - to the analysis of water metabolism. In this paper, we discuss the peculiar analytical identity that “water” shows within multi-scale metabolic studies: water represents a flow-element when considering the metabolism of social systems (at a small scale, when describing the water metabolism inside the society) and a fund-element when considering the metabolism o ecosystems (at a larger scale when describing the water metabolism outside the society). The theoretical analysis is illustrated using two case which characterize the metabolic patterns regarding water use of a productive system in Catalonia and a water management policy in Andarax River Basin in Andalusia.
Resumo:
Proyecto realizado para la empresa de reparación de aparatos eléctricos Domestic Appliance con el que se se pretende facilitar y mejorar el proceso de gestión de todas las reparaciones que se realizan mediante una aplicación web. A nivel de Pyme, se trata de un sistema básico de CRM (Customer Relationship Management) y de un gestor de incidencias con el que los empleados de la empresa Domestic Appliance podrán mantener un mejor seguimiento de todos los casos abiertos, ver estadísticas y obtener información de todos los clientes. El sistema se completa con la gestión de un correo interno dónde los usuarios se podrán enviar información confidencial entre ellos, actuando como un correo interno.
Resumo:
Water resources management, as also water service provision projects in developing countries have difficulties to take adequate decisions due to scarce reliable information, and a lack of proper information managing. Some appropriate tools need to be developed in order to improve decision making to improve water management and access of the poorest, through the design of Decision Support Systems (DSS). On the one side, a DSS for developing co-operation projects on water access improvement has been developed. Such a tool has specific context constrains (structure of the system, software requirements) and needs (Logical Framework Approach monitoring, organizational-learning, accountability and evaluation) that shall be considered for its design. Key aspects for its successful implementation have appeared to be a participatory design of the system and support of the managerial positions at the inception phase. A case study in Tanzania was conducted, together with the Spanish NGO ONGAWA – Ingeniería para el Desarrollo. On the other side, DSS are required also to improve decision making on water management resources in order to achieve a sustainable development that not only improves the living conditions of the population in developing countries, but that also does not hinder opportunities of the poorest on those context. A DSS made to fulfil these requirements shall be using information from water resources modelling, as also on the environment and the social context. Through the research, a case study has been conducted in the Central Rift Valley of Ethiopia, an endhorreic basin 160 km south of Addis Ababa. There, water has been modelled using ArcSWAT, a physically based model which can assess the impact of land management practices on large complex watersheds with varying soils, land use and management conditions over long periods of time. Moreover, governance on water and environment as also the socioeconomic context have been studied.