16 resultados para divalent ions
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Molecular dynamics simulations were performed to study the ion and water distribution around a spherical charged nanoparticle. A soft nanoparticle model was designed using a set of hydrophobic interaction sites distributed in six concentric spherical layers. In order to simulate the effect of charged functionalyzed groups on the nanoparticle surface, a set of charged sites were distributed in the outer layer. Four charged nanoparticle models, from a surface charge value of −0.035 Cm−2 to − 0.28 Cm−2, were studied in NaCl and CaCl2 salt solutions at 1 M and 0.1 M concentrations to evaluate the effect of the surface charge, counterion valence, and concentration of added salt. We obtain that Na + and Ca2 + ions enter inside the soft nanoparticle. Monovalent ions are more accumulated inside the nanoparticle surface, whereas divalent ions are more accumulated just in the plane of the nanoparticle surface sites. The increasing of the the salt concentration has little effect on the internalization of counterions, but significantly reduces the number of water molecules that enter inside the nanoparticle. The manner of distributing the surface charge in the nanoparticle (uniformly over all surface sites or discretely over a limited set of randomly selected sites) considerably affects the distribution of counterions in the proximities of the nanoparticle surface.
Resumo:
Estudi elaborat a partir d’una estada al Stony Brook University al juliol del 2006. El RbTiOPO4 (RTP) monocristal•lí és un material d' òptica no lineal molt rellevant i utilitzat en la tecnologia làser actual, químicament molt estable i amb unes propietats físiques molt destacades, entre elles destaquen els alts coeficients electro-òptics i l'alt llindar de dany òptic que presenta. En els últims anys s’està utilitzant tecnològicament en aplicacions d'òptica no lineal en general i electro-òptiques en particular. En alguns casos ja ha substituït, millorant prestacions, a materials tals com el KTP o el LNB(1). Dopant RTP amb ions lantànids (Ln3+) (2-4), el material es converteix en un material làser auto-doblador de freqüència, combinant les seves propietats no lineals amb les de matriu làser. El RTP genera radiació de segon harmònic (SHG) a partir d’un feix fonamental amb longituds d’ona inferiors a 990 nm, que és el límit que presenta el KTP.La determinació de la ubicació estructural i l’estudi de l'entorn local del ions actius làser és de fonamental importància per a la correcta interpretació de les propietats espectroscòpiques d’aquest material. Mesures de difracció de neutrons sobre mostra de pols cristal•lí mostren que els ions Nb5+ i Ln3+ només substitueixin posicions de Ti4+ (8-9). Estudis molt recents d'EPR (electron paramagnetic resonance) semblen indicar que quan la concentració d'ió Ln3+ es baixa, aquest ió presenta la tendència a substituir l'ió alcalí present a l'estructura (10).Després dels resultats obtinguts en el present treball a partir de la tècnica EXAFS a la instal•lació sincrotò del Brookhaven National Laboratory/State University of New York (Stony Brook) es pot concloure definitivament que els ions Nb s’ubiquen en la posició Ti (1) i que els ions Yb3+ es distribueixen paritariament en les dues posicions del Ti (1 i 2). Aquests resultats aporten una valuosa informació per a la correcta interpretació dels espectres, tant d’absorció com d’emissió, del material i per la avaluació dels paràmetres del seu comportament durant l'acció làser.
Resumo:
Degut a la gran demanda tecnològica, actualment hi ha un gran interès en desenvolupar medis magnètics amb entitats ferromagnètiques de dimensions nanomètriques. Aquesta demanda promou la investigació i el desenvolupament de nous materials i processos de fabricació que permetin controlar d’una manera més precisa les propietats magnètiques i estructurals. Entre els mètodes de litografia convencionals (per exemple deposició física a través de màscares, deposició química en fase vapor i electrodeposició), recentment s’ha demostrat que la irradiació amb ions a través de màscares pre‐litografiades, sembla ser un bon mètode per a la fabricació d’estructures ferromagnètiques de l’ordre dels nanòmetres. Aquesta tècnica pot ser aplicada per aprofitar la transició paramagnètica‐ferromagnètica que presenten alguns materials al ser desordenats estructuralment (per exemple FeAl, FePt3, Ni3Sn2). En el treball que es presenta a continuació s’utilitza l’aliatge Fe60Al40 per a fabricar estructures ferromagnètiques embegudes en una matriu paramagnètica mitjançant irradiació amb ions d’argó a través d’una membrana de polimetil metacrilat (PMMA) prèviament litografiada amb feixos d’electrons (EBL). La fabricació d’aquest sistema té com a objectiu d’estudiar l’evolució de la morfologia i el gruix de PMMA (a partir de SEM i AFM) i del comportament magnètic de les estructures fabricades (MFM i MOKE), quan és irradiat consecutivament a diferents energies. Per a completar l’estudi s’han utilitzat simulacions per a determinar les condicions d’irradiació (TRIM), com per a una millor comprensió dels resultats (simulacions micromagnètiques). El contingut de la memòria inclou una breu introducció històrica i conceptual sobre el magnetisme. A continuació s’exposen les tècniques necessàries per a la fabricació, preparació i caracterització de la mostra. Finalment es presenta una discussió dels resultats obtinguts i les conclusions.
Resumo:
En aquest treball de recerca, s’han estudiat les dues isoformes de metal·lotioneïna CnMT1 i CnMT2 presents en el fong patogen Cryptococcus neoformans. Recentment s’ha descobert que aquest fong té com a factor de virulència, els nivells de coure del medi on es troba. Les dues isoformes produïdes en medis rics en Zn(II) s’han utilitzat per a fer valoracions amb Cu(I) i Cd(II), i s’ha seguit l’evolució dels experiments mitjançant les tècniques DC, UV-vis, i ESI-MS. S’ha pogut observar que les dues isoformes tenen preferència per enllaçar Cu(I). Per altra banda també s’ha establert una gran homologia entre les dues seqüències.
Resumo:
The sensitizing action of amorphous silicon nanoclusters on erbium ions in thin silica films has been studied under low-energy (long wavelength) optical excitation. Profound differences in fast visible and infrared emission dynamics have been found with respect to the high-energy (shortwavelength) case. These findings point out to a strong dependence of the energy transfer process on the optical excitation energy. Total inhibition of energy transfer to erbium states higher than thefirst excited state (4I13/2) has been demonstrated for excitation energy below 1.82 eV (excitation wavelength longer than 680 nm). Direct excitation of erbium ions to the first excited state (4I13/2)has been confirmed to be the dominant energy transfer mechanism over the whole spectral range of optical excitation used (540 nm¿680 nm).
Resumo:
The variation in the emission of Si+ ions from ion-beam-induced oxidized silicon surfaces has been studied. The stoichiometry and the electronic structure of the altered layer has been characterized using x-ray photoelectron spectroscopy (XPS). The XPS analysis of the Si 2p core level indicates the strong presence of suboxide chemical states when bombarding at angles of incidence larger than 30 °. Since the surface stoichiometry or degree of oxidation varies with the angle of incidence, the corresponding valence-band structures also differ among each other. A comparison between experimental measurements and theoretically calculated Si and SiO2 valence bands indicates that the valence bands for the altered layers are formed by a combination of those two. Since Si-Si bonds are present in the suboxide molecules, the top of the respective new valence bands are formed by the corresponding 3p-3p Si-like subbands, which extend up to the Si Fermi level. The changes in stoichiometry and electronic structure have been correlated with the emission of Si+ ions from these surfaces. From the results a general model for the Si+ ion emission is proposed combining the resonant tunneling and local-bond-breaking models.
Resumo:
Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.
Resumo:
Single-stranded DNA (ssDNA) plays a major role in several biological processes. It is therefore of fundamental interest to understand how the elastic response and the formation of secondary structures are modulated by the interplay between base pairing and electrostatic interactions. Here we measure force-extension curves (FECs) of ssDNA molecules in optical tweezers set up over two orders of magnitude of monovalent and divalent salt conditions, and obtain its elastic parameters by fitting the FECs to semiflexible models of polymers. For both monovalent and divalent salts, we find that the electrostatic contribution to the persistence length is proportional to the Debye screening length, varying as the inverse of the square root of cation concentration. The intrinsic persistence length is equal to 0.7 nm for both types of salts, and the effectivity of divalent cations in screening electrostatic interactions appears to be 100-fold as compared with monovalent salt, in line with what has been recently reported for single-stranded RNA. Finally, we propose an analysis of the FECs using a model that accounts for the effective thickness of the filament at low salt condition and a simple phenomenological description that quantifies the formation of non-specific secondary structure at low forces.
Resumo:
We have studied the current transport and electroluminescence properties of metal oxide semiconductor MOS devices in which the oxide layer, which is codoped with silicon nanoclusters and erbium ions, is made by magnetron sputtering. Electrical measurements have allowed us to identify a Poole-Frenkel conduction mechanism. We observe an important contribution of the Si nanoclusters to the conduction in silicon oxide films, and no evidence of Fowler-Nordheim tunneling. The results suggest that the electroluminescence of the erbium ions in these layers is generated by energy transfer from the Si nanoparticles. Finally, we report an electroluminescence power efficiency above 10−3%. © 2009 American Institute of Physics. doi:10.1063/1.3213386
Resumo:
We present an analysis of factors influencing carrier transport and electroluminescence (EL) at 1.5 µm from erbium-doped silicon-rich silica (SiOx) layers. The effects of both the active layer thickness and the Si excess content on the electrical excitation of erbium are studied. We demonstrate that when the thickness is decreased from a few hundred to tens of nanometers the conductivity is greatly enhanced. Carrier transport is well described in all cases by a Poole-Frenkel mechanism, while the thickness-dependent current density suggests an evolution of both density and distribution of trapping states induced by Si nanoinclusions. We ascribe this observation to stress-induced effects prevailing in thin films, which inhibit the agglomeration of Si atoms, resulting in a high density of sub-nm Si inclusions that induce traps much shallower than those generated by Si nanoclusters (Si-ncs) formed in thicker films. There is no direct correlation between high conductivity and optimized EL intensity at 1.5 µm. Our results suggest that the main excitation mechanism governing the EL signal is impact excitation, which gradually becomes more efficient as film thickness increases, thanks to the increased segregation of Si-ncs, which in turn allows more efficient injection of hot electrons into the oxide matrix. Optimization of the EL signal is thus found to be a compromise between conductivity and both number and degree of segregation of Si-ncs, all of which are governed by a combination of excess Si content and sample thickness. This material study has strong implications for many electrically driven devices using Si-ncs or Si-excess mediated EL.
Resumo:
A scheme to generate long-range spin-spin interactions between three-level ions in a chain is presented, providing a feasible experimental route to the rich physics of well-known SU(3) models. In particular, we demonstrate different signatures of quantum chaos which can be controlled and observed in experiments with trapped ions.
Resumo:
Single-stranded DNA (ssDNA) plays a major role in several biological processes. It is therefore of fundamental interest to understand how the elastic response and the formation of secondary structures are modulated by the interplay between base pairing and electrostatic interactions. Here we measure force-extension curves (FECs) of ssDNA molecules in optical tweezers set up over two orders of magnitude of monovalent and divalent salt conditions, and obtain its elastic parameters by fitting the FECs to semiflexible models of polymers. For both monovalent and divalent salts, we find that the electrostatic contribution to the persistence length is proportional to the Debye screening length, varying as the inverse of the square root of cation concentration. The intrinsic persistence length is equal to 0.7 nm for both types of salts, and the effectivity of divalent cations in screening electrostatic interactions appears to be 100-fold as compared with monovalent salt, in line with what has been recently reported for single-stranded RNA. Finally, we propose an analysis of the FECs using a model that accounts for the effective thickness of the filament at low salt condition and a simple phenomenological description that quantifies the formation of non-specific secondary structure at low forces.