28 resultados para direct search optimization algorithm
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
L’objectiu d’aquest projecte que consisteix a elaborar un algoritme d’optimització que permeti, mitjançant un ajust de dades per mínims quadrats, la extracció dels paràmetres del circuit equivalent que composen el model teòric d’un ressonador FBAR, a partir de les mesures dels paràmetres S. Per a dur a terme aquest treball, es desenvolupa en primer lloc tota la teoria necessària de ressonadors FBAR. Començant pel funcionament i l’estructura, i mostrant especial interès en el modelat d’aquests ressonadors mitjançant els models de Mason, Butterworth Van-Dyke i BVD Modificat. En segon terme, s’estudia la teoria sobre optimització i programació No-Lineal. Un cop s’ha exposat la teoria, es procedeix a la descripció de l’algoritme implementat. Aquest algoritme utilitza una estratègia de múltiples passos que agilitzen l'extracció dels paràmetres del ressonador.
Resumo:
Les Mesures de Semblança Quàntica Molecular (MSQM) requereixen la maximització del solapament de les densitats electròniques de les molècules que es comparen. En aquest treball es presenta un algorisme de maximització de les MSQM, que és global en el límit de densitatselectròniques deformades a funcions deltes de Dirac. A partir d'aquest algorisme se'n deriva l'equivalent per a densitats no deformades
Resumo:
We evaluate the performance of different optimization techniques developed in the context of optical flowcomputation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we develop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional multilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrectional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimization search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow computation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task
Resumo:
We evaluate the performance of different optimization techniques developed in the context of optical flow computation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we de- velop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional mul- tilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrec- tional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimiza- tion search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow com- putation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Algoritmo que optimiza y crea pairings para tripulaciones de líneas aéreas mediante la posterior programación en Java.
Resumo:
In this paper, we are proposing a methodology to determine the most efficient and least costly way of crew pairing optimization. We are developing a methodology based on algorithm optimization on Eclipse opensource IDE using the Java programming language to solve the crew scheduling problems.
Resumo:
In this paper we present an algorithm to assign proctors toexams. This NP-hard problem is related to the generalized assignmentproblem with multiple objectives. The problem consists of assigningteaching assistants to proctor final exams at a university. We formulatethis problem as a multiobjective integer program (IP) with a preferencefunction and a workload-fairness function. We then consider also a weightedobjective that combines both functions. We develop a scatter searchprocedure and compare its outcome with solutions found by solving theIP model with CPLEX 6.5. Our test problems are real instances from aUniversity in Spain.
Resumo:
This paper describes Question Waves, an algorithm that can be applied to social search protocols, such as Asknext or Sixearch. In this model, the queries are propagated through the social network, with faster propagation through more trustable acquaintances. Question Waves uses local information to make decisions and obtain an answer ranking. With Question Waves, the answers that arrive first are the most likely to be relevant, and we computed the correlation of answer relevance with the order of arrival to demonstrate this result. We obtained correlations equivalent to the heuristics that use global knowledge, such as profile similarity among users or the expertise value of an agent. Because Question Waves is compatible with the social search protocol Asknext, it is possible to stop a search when enough relevant answers have been found; additionally, stopping the search early only introduces a minimal risk of not obtaining the best possible answer. Furthermore, Question Waves does not require a re-ranking algorithm because the results arrive sorted
Resumo:
Aquest projecte es tracta de la optimització i la implementació de l’etapa d’adquisició d’un receptor GPS. També inclou una revisió breu del sistema GPS i els seus principis de funcionament. El procés d’adquisició s’ha estudiat amb detall i programat en els entorns de treball Matlab i Simulink. El fet d’implementar aquesta etapa en dos entorns diferents ha estat molt útil tant de cara a l’aprenentatge com també per la comprovació dels resultats obtinguts. El principal objectiu del treball és el disseny d’un model Simulink que es capaç d’adquirir una senyal capturada amb hardware real. En realitat, s’han fet dues implementacions: una que utilitza blocs propis de Simulink i l’altra que utilitza blocs de la llibreria Xilinx. D’aquesta manera, posteriorment, es facilitaria la transició del model a la FPGA utilitzant l’entorn ISE de Xilinx. La implementació de l’etapa d’adquisició es basa en el mètode de cerca de fase de codi en paral·lel, el qual empra la operació correlació creuada mitjançant la transformada ràpida de Fourier (FFT). Per aquest procés es necessari realitzar dues transformades (per a la senyal entrant i el codi de referència) i una antitransformada de Fourier (per al resultat de la correlació). Per tal d’optimitzar el disseny s’utilitza un bloc FFT, ja que tres blocs consumeixen gran part dels recursos d’una FPGA. En lloc de replicar el bloc FFT, en el model el bloc és compartit en el temps gràcies a l’ús de buffers i commutadors, com a resultat la quantitat de recursos requerits per una implementació en una FPGA es podria reduir considerablement.
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
Nowadays, there are several services and applications that allow users to locate and move to different tourist areas using a mobile device. These systems can be used either by internet or downloading an application in concrete places like a visitors centre. Although such applications are able to facilitate the location and the search for points of interest, in most cases, these services and applications do not meet the needs of each user. This paper aims to provide a solution by studying the main projects, services and applications, their routing algorithms and their treatment of the real geographical data in Android mobile devices, focusing on the data acquisition and treatment to improve the routing searches in off-line environments.