13 resultados para cytotoxic assay
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Existeixen creixents evidències què la resposta dels limfòcits T CD8+ alpha beta citotòxics (CTLs) és un element fonamental en la infecció produïda pel VIH. Les CTLs VIH especifiques es consideren molt importants en la reducció de la càrrega viral i en la contenció de la infecció. Encara que la combinació dels antiretrovirals (HAART) ha suposat una millora considerable en la lluita contra el VIH induint una important reducció de la càrrega viral i augmentant el nombre de cèl•lules T CD4+, diverses complicacions han fet ressaltar la necessitat de noves alternatives terapèutiques. Les complicacions inclouen: manca de recuperació d’una resposta immune sòlida contra el VIH, toxicitat a llarg termini de la teràpia i el descobriment que les cèl•lules T CD4+ constitueixen un reservori pel virus. Les noves alternatives controlaran la replicació viral i reconstituiran la immunitat. L’eficàcia de la immunoteràpia cel•lular amb transferència adoptiva de CTLs virals específics s’ha provat en diferents infeccions virals humanes, incloent el VIH. Proposem una modificació de la immunoteràpia adoptiva redirigint l’especificitat de les cèl•lules T contra el VIH mitjançant la transfecció dels gens del TCR. En aquest assaig preclínic, ens aprofitarem de la tecnologia dels animals transgènics per les molècules de HLA, amb la finalitat de generar TCRs d’alta afinitat dirigits contra epitops del VIH restringits per la molècula HLA. Aquests TCRs seran induïts in vivo i seleccionats in vitro. Les cadenes alpha i beta dels TCRs VIH específics procedents de les CTLs seran clonades mitjançant tècniques de biologia molecular. Aquests TCRs VIH específics seran transferits a cèl•lules T CD8+ humanes i la seva especificitat i capacitat citolítica contra cèl•lules diana que presentin antígens de VIH-1 s’estudiaran mitjançant la combinació de diverses tècniques noves (FCC, transfecció mitjançant Nucleoefector). Finalment, una construcció retroviral adient per la seva transducció en cèl•lules T humanes s’establirà amb un TCR òptim seleccionat.
Resumo:
Purpose. The aim of this study was to identify new surfactants with low skin irritant properties for use in pharmaceutical and cosmetic formulations, employing cell culture as an alternative method to in vivo testing. In addition, we sought to establish whether potential cytotoxic properties were related to the size of the counterions bound to the surfactants. Methods. Cytotoxicity was assessed in the mouse fibroblast cell line 3T6, and the human keratinocyte cell line NCTC 2544, using the MTT assay and uptake of the vital dye neutral red 24 h after dosing (NRU). Results. Lysine-derivative surfactants showed higher IC50s than did commercial anionic irritant compounds such as sodium dodecyl sulphate, proving to be no more harmful than amphoteric betaines. The aggressiveness of the surfactants depended upon the size of their constituent counterions: surfactants associated with lighter counterions showed a proportionally higher aggressivity than those with heavier ones. Conclusions. Synthetic lysine-derivative anionic surfactants are less irritant than commercial surfactants such as sodium dodecyl sulphate and Hexadecyltrimethylammonium bromide and are similar to Betaines. These surfactants may offer promising applications in pharmaceutical and cosmetic preparations, representing a potential alternative to commercial anionic surfactants as a result of their low irritancy potential.
Resumo:
Surfactants are used as additives in topical pharmaceuticals and drug delivery systems. The biocompatibility of amino acid-based surfactants makes them highly suitable for use in these fields, but tests are needed to evaluate their potential toxicity. Here we addressed the sensitivity of tumor (HeLa, MCF-7) and non-tumor (3T3, 3T6, HaCaT, NCTC 2544) cell lines to the toxic effects of lysine-based surfactants by means of two in vitro endpoints (MTT and NRU). This comparative assay may serve as a reliable approach for predictive toxicity screening of chemicals prior to pharmaceutical applications. After 24-h of cell exposure to surfactants, differing toxic responses were observed. NCTC 2544 and 3T6 cell lines were the most sensitive, while both tumor cells and 3T3 fibroblasts were more resistant to the cytotoxic effects of surfactants. IC50-values revealed that cytotoxicity was detected earlier by MTT assay than by NRU assay, regardless of the compound or cell line. The overall results showed that surfactants with organic counterions were less cytotoxic than those with inorganic counterions. Our findings highlight the relevance of the correct choice and combination of cell lines and bioassays in toxicity studies for a safe and reliable screen of chemicals with potential interest in pharmaceutical industry.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of N¿- and N¿-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the ¿-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.
Resumo:
Drug-resistance and therapy failure due to drug-drug interactions are the main challenges in current treatment against Human Immunodeficiency Virus (HIV) infection. As such, there is a continuous need for the development of new and more potent anti-HIV drugs. Here we established a high-throughput screen based on the highly permissive TZM-bl cell line to identify novel HIV inhibitors. The assay allows discriminating compounds acting on early and/or late steps of the HIV replication cycle. The platform was used to screen a unique library of secondary metabolites derived from myxobacteria. Several hits with good anti-HIV profiles were identified. Five of the initial hits were tested for their antiviral potency. Four myxobacterial compounds, sulfangolid C, soraphen F, epothilon D and spirangien B, showed EC50 values in the nM range with SI > 15. Interestingly, we found a high amount of overlapping hits compared with a previous screen for Hepatitis C Virus (HCV) using the same library. The unique structures and mode-of-actions of these natural compounds make myxobacteria an attractive source of chemicals for the development of broad-spectrum antivirals. Further biological and structural studies of our initial hits might help recognize smaller drug-like derivatives that in turn could be synthesized and further optimized.
Resumo:
Background: Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite50-deoxy-5-fluorouridine (50-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA incancer cells treated with 50-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3participates in the activity of genotoxic agents. Methods: The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results: 50-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions: Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.
Resumo:
Background: Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite50-deoxy-5-fluorouridine (50-DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA incancer cells treated with 50-DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3participates in the activity of genotoxic agents. Methods: The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. Results: 50-DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G1/S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Conclusions: Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Here, we report novel cationic lysine-based surfactants (hydrochloride salts of Nε- and Nα-acyl lysine methyl ester) that differ in the position of the positive charge and the length of the alkyl chain. Amino acid-based surfactants could be promising novel biomaterials in drug delivery systems, given their biocompatible properties and low cytotoxic potential. We examined their ability to disrupt the cell membrane in a range of pH values, concentrations and incubation times, using a standard hemolysis assay as a model of endosomal membranes. Furthermore, we addressed the mechanism of surfactant-mediated membrane destabilization, including the effects of each surfactant on erythrocyte morphology as a function of pH. We found that only surfactants with the positive charge on the α-amino group of lysine showed pH-sensitive hemolytic activity and improved kinetics within the endosomal pH range, indicating that the positive charge position is critical for pH-responsive behavior. Moreover, our results showed that an increase in the alkyl chain length from 14 to 16 carbon atoms was associated with a lower ability to disrupt cell membranes. Knowledge on modulating surfactant-lipid bilayer interactions may help us to develop more efficient biocompatible amino acid-based drug delivery devices.
Resumo:
Differentiation between photoallergenic and phototoxic reactions induced by low molecular weight compounds represents a current problem. The use of eratinocytes as a potential tool for the detection of photoallergens as opposed to photoirritants is considered an interesting strategy for developing in vitro methods. We have previously demonstrated the possibility to use the human keratinocyte cell line NCTC2455 and the production of interleukin-18 (IL-18) to screen low molecular weight sensitizers. The purpose of this work was to explore the possibility to use the NCTC2544 assay to identify photoallergens and discriminate from phototoxic chemicals. First, we identified suitable condition of UV-irradiation (3.5 J/cm2) by investigating the effect of UVAirradiation on intracellular IL-18 on untreated or chloropromazine (a representative phototoxic compound)- treated NCTC2544 cells. Then, the effect of UVA-irradiation over NCTC2544 cells treated with increasing concentrations of 15 compounds including photoallergens (benzophenone, 4-ter-butyl-4-methoxydibenzoylmethane, 2-ethylexyl-p-methoxycinnamate, ketoprofen, 6-methylcumarin); photoirritant and photoallergen (4-aminobenzoic acid, chlorpromazine, promethazine); photoirritants (acridine, ibuprofen, 8-methoxypsoralen, retinoic acid); and negative compounds (lactic acid, SDS and p-phenilendiamine) was investigated. Twenty-four hours after exposure, cytotoxicity was evaluated by the MTT assay or LDH leakage, while ELISA was used to measure the production of IL-18. At the maximal concentration assayed with non-cytotoxic effects (CV80 under irradiated condition), all tested photoallergens induced a significant and a dose-dependent increase of intracellular IL-18 following UVA irratiation, whereas photoirritants failed. We suggest that this system may be useful for the in vitro evaluation of the photoallergic potential of chemicals.
Resumo:
Many strategies for treating diseases require the delivery of drugs into the cell cytoplasm following internalization within endosomal vesicles. Thus, compounds triggered by low pH to disrupt membranes and release endosomal contents into the cytosol are of particular interest. Cationic nanovesicles have attracted considerable interest as effective carriers to improve the delivery of biologically active molecules into and through the skin. In this study, lipid-based nanovesicles containing three different cationic lysine-based surfactants were designed for topical administration. We used representative skin cell lines and in vitro assays to assess whether the cationic compounds modulate the toxic responses of these nanocarriers. The nanovesicles were characterized in both water and cell culture medium. In general, significant agglomeration occurred after 24 h incubation under cell culture conditions. We found different cytotoxic responses among the formulations, which depended on the surfactant,cell line (3T3, HaCaT, and THP-1) and endpoint assayed (MTT, NRU, and LDH). Moreover, no potential phototoxicity was detected in fibroblast or keratinocyte cells, whereas only a slight inflammatory response was induced, as detected by IL-1a and IL-8 production in HaCaT and THP-1 cell lines, respectively. A key finding of our research was that the cationic charge position and the alkyl chain length of the surfactants determine the nanovesicles resulting toxicity. The charge on the a-amino group of lysine increased the depletion of cell metabolic activity, as determined by the MTT assay, while a higher hydrophobicity tends to enhance the toxic responses of the nanovesicles. The insights provided here using different cell lines and assays offer a comprehensive toxicological evaluation of this group of new nanomaterials.
Resumo:
Melanoma is one of the most aggressive types of skin cancer and its incidence rate is still increasing. All existing treatments are minimally effective. Consequently, new therapeutic agents for melanoma treatment should be developed. The DM-1 compound is a curcumin analog that possesses several curcumin characteristics, such as antiproliferative, antitumor, and anti-metastatic properties. The aim of this study was to evaluate the different signaling pathways involved in the cytotoxic effect of DM-1 on melanoma cells. The apoptotic process and cytoskeletal changes were evaluated by immunoblotting and immunofluorescence, respectively, in melanoma cells. After DM-1 treatment, SK-MEL-5 melanoma cells showed actin filament disorganization with spicule formation throughout the cytoskeleton and significant reduction of focal adhesion as well as they were present only at cell extremities, conferring a poor connection between the cell and the substrate. Besides this, there was significant filopodium retraction and loss of typical cytoskeleton scaffold. These modifications contributed to cell detachment followed by cell death. Furthermore, DM-1-induced apoptosis was triggered by multiple Bcl-2 proteins involved in both the extrinsic and the intrinsic apoptotic pathways. SK-MEL-5 cells showed a death mechanism mainly by Bcl-2/Bax ratio decrease, whereas A375 cells presented apoptosis induction by Mcl-1 and Bcl-xL downregulation. In SK-MEL-5 and A375 melanoma cells, there was a significant increase in the active form of caspase 9, and the inactive form of the effector caspase 3 was decreased in both cell lines. Expression of cleaved poly ADP ribose polymerase was increased after DM-1 treatment in these melanoma cell lines, demonstrating that the apoptotic process occurred. Altogether, these data elucidate the cellular and molecular mechanisms involved in the cytotoxicity induced by the antitumor agent DM-1 in melanoma cells.
Resumo:
The marine alkaloid, Lamellarin D (Lam-D), has shown potent cytotoxicity in numerous cancer cell lines, and was recently identified as a potent topoisomerase I inhibitor. A library of open lactone analogs of Lam-D was prepared from a methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-3- carboxylate scaffold (1) by introducing various aryl groups through sequential and regioselective bromination, followed by Pd(0)-catalyzed Suzuki cross-coupling chemistry. The compounds were obtained in a 24-44% overall yield, and tested in a panel of three human tumor cell lines, MDA-MB- 231 (breast), A-549 (lung), and HT-29 (colon), to evaluate their cytotoxic potential. From these data the SAR study concluded that more than 75% of the open-chain Lam-D analogs tested showed cytotoxicity in a low micromolar GI50 range.
Resumo:
The marine alkaloid, Lamellarin D (Lam-D), has shown potent cytotoxicity in numerous cancer cell lines, and was recently identified as a potent topoisomerase I inhibitor. A library of open lactone analogs of Lam-D was prepared from a methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-3- carboxylate scaffold (1) by introducing various aryl groups through sequential and regioselective bromination, followed by Pd(0)-catalyzed Suzuki cross-coupling chemistry. The compounds were obtained in a 24-44% overall yield, and tested in a panel of three human tumor cell lines, MDA-MB- 231 (breast), A-549 (lung), and HT-29 (colon), to evaluate their cytotoxic potential. From these data the SAR study concluded that more than 75% of the open-chain Lam-D analogs tested showed cytotoxicity in a low micromolar GI50 range.