101 resultados para conditional

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides evidence on the sources of co-movement in monthly US and UK stock price movements by investigating the role of macroeconomic and financial variables in a bivariate system with time-varying conditional correlations. Crosscountry communality in response is uncovered, with changes in the US Federal Funds rate, UK bond yields and oil prices having similar negative effects in both markets. Other variables also play a role, especially for the UK market. These effects do not, however, explain the marked increase in cross-market correlations observed from around 2000, which we attribute to time variation in the correlations of shocks to these markets. A regime-switching smooth transition model captures this time variation well and shows the correlations increase dramatically around 1999-2000. JEL classifications: C32, C51, G15 Keywords: international stock returns, DCC-GARCH model, smooth transition conditional correlation GARCH model, model evaluation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parts based model is a parametrization of an object class using a collection of landmarks following the object structure. The matching of parts based models is one of the problems where pairwise Conditional Random Fields have been successfully applied. The main reason of their effectiveness is tractable inference and learning due to the simplicity of involved graphs, usually trees. However, these models do not consider possible patterns of statistics among sets of landmarks, and thus they sufffer from using too myopic information. To overcome this limitation, we propoese a novel structure based on a hierarchical Conditional Random Fields, which we explain in the first part of this memory. We build a hierarchy of combinations of landmarks, where matching is performed taking into account the whole hierarchy. To preserve tractable inference we effectively sample the label set. We test our method on facial feature selection and human pose estimation on two challenging datasets: Buffy and MultiPIE. In the second part of this memory, we present a novel approach to multiple kernel combination that relies on stacked classification. This method can be used to evaluate the landmarks of the parts-based model approach. Our method is based on combining responses of a set of independent classifiers for each individual kernel. Unlike earlier approaches that linearly combine kernel responses, our approach uses them as inputs to another set of classifiers. We will show that we outperform state-of-the-art methods on most of the standard benchmark datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biplot has proved to be a powerful descriptive and analytical tool in many areasof applications of statistics. For compositional data the necessary theoreticaladaptation has been provided, with illustrative applications, by Aitchison (1990) andAitchison and Greenacre (2002). These papers were restricted to the interpretation ofsimple compositional data sets. In many situations the problem has to be described insome form of conditional modelling. For example, in a clinical trial where interest isin how patients’ steroid metabolite compositions may change as a result of differenttreatment regimes, interest is in relating the compositions after treatment to thecompositions before treatment and the nature of the treatments applied. To study thisthrough a biplot technique requires the development of some form of conditionalcompositional biplot. This is the purpose of this paper. We choose as a motivatingapplication an analysis of the 1992 US President ial Election, where interest may be inhow the three-part composition, the percentage division among the three candidates -Bush, Clinton and Perot - of the presidential vote in each state, depends on the ethniccomposition and on the urban-rural composition of the state. The methodology ofconditional compositional biplots is first developed and a detailed interpretation of the1992 US Presidential Election provided. We use a second application involving theconditional variability of tektite mineral compositions with respect to major oxidecompositions to demonstrate some hazards of simplistic interpretation of biplots.Finally we conjecture on further possible applications of conditional compositionalbiplots

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a parsimonious regime-switching approach to model the correlations between assets, the threshold conditional correlation (TCC) model. This method allows the dynamics of the correlations to change from one state (or regime) to another as a function of observable transition variables. Our model is similar in spirit to Silvennoinen and Teräsvirta (2009) and Pelletier (2006) but with the appealing feature that it does not suffer from the course of dimensionality. In particular, estimation of the parameters of the TCC involves a simple grid search procedure. In addition, it is easy to guarantee a positive definite correlation matrix because the TCC estimator is given by the sample correlation matrix, which is positive definite by construction. The methodology is illustrated by evaluating the behaviour of international equities, govenrment bonds and major exchange rates, first separately and then jointly. We also test and allow for different parts in the correlation matrix to be governed by different transition variables. For this, we estimate a multi-threshold TCC specification. Further, we evaluate the economic performance of the TCC model against a constant conditional correlation (CCC) estimator using a Diebold-Mariano type test. We conclude that threshold correlation modelling gives rise to a significant reduction in portfolio´s variance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze how unemployment, job finding and job separation rates react to neutral and investment-specific technology shocks. Neutral shocks increase unemployment and explain a substantial portion of unemployment volatility; investment-specific shocks expand employment and hours worked and mostly contribute to hours worked volatility. Movements in the job separation rates are responsible for the impact response of unemployment while job finding rates for movements along its adjustment path. Our evidence qualifies the conclusions by Hall (2005) and Shimer (2007) and warns against using search models with exogenous separation rates to analyze the effects of technology shocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze how unemployment, job finding and job separation rates reactto neutral and investment-specific technology shocks. Neutral shocks increaseunemployment and explain a substantial portion of it volatility; investment-specificshocks expand employment and hours worked and contribute to hoursworked volatility. Movements in the job separation rates are responsible for theimpact response of unemployment while job finding rates for movements alongits adjustment path. The evidence warns against using models with exogenousseparation rates and challenges the conventional way of modelling technologyshocks in search and sticky price models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Brain-Derived Neurotrophic Factor (BDNF) is the main candidate for neuroprotective therapy for Huntington's disease (HD), but its conditional administration is one of its most challenging problems. Results Here we used transgenic mice that over-express BDNF under the control of the Glial Fibrillary Acidic Protein (GFAP) promoter (pGFAP-BDNF mice) to test whether up-regulation and release of BDNF, dependent on astrogliosis, could be protective in HD. Thus, we cross-mated pGFAP-BDNF mice with R6/2 mice to generate a double-mutant mouse with mutant huntingtin protein and with a conditional over-expression of BDNF, only under pathological conditions. In these R6/2:pGFAP-BDNF animals, the decrease in striatal BDNF levels induced by mutant huntingtin was prevented in comparison to R6/2 animals at 12 weeks of age. The recovery of the neurotrophin levels in R6/2:pGFAP-BDNF mice correlated with an improvement in several motor coordination tasks and with a significant delay in anxiety and clasping alterations. Therefore, we next examined a possible improvement in cortico-striatal connectivity in R62:pGFAP-BDNF mice. Interestingly, we found that the over-expression of BDNF prevented the decrease of cortico-striatal presynaptic (VGLUT1) and postsynaptic (PSD-95) markers in the R6/2:pGFAP-BDNF striatum. Electrophysiological studies also showed that basal synaptic transmission and synaptic fatigue both improved in R6/2:pGAP-BDNF mice. Conclusions These results indicate that the conditional administration of BDNF under the GFAP promoter could become a therapeutic strategy for HD due to its positive effects on synaptic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose new methods for evaluating predictive densities. The methods includeKolmogorov-Smirnov and Cram?r-von Mises-type tests for the correct specification ofpredictive densities robust to dynamic mis-specification. The novelty is that the testscan detect mis-specification in the predictive densities even if it appears only overa fraction of the sample, due to the presence of instabilities. Our results indicatethat our tests are well sized and have good power in detecting mis-specification inpredictive densities, even when it is time-varying. An application to density forecastsof the Survey of Professional Forecasters demonstrates the usefulness of the proposedmethodologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many governments in developing countries implement programs that aim to address nutrionalfailures in early childhood, yet evidence on the effectiveness of these interventions is scant. Thispaper evaluates the impact of a conditional food supplementation program on child mortality inEcuador. The Programa de Alimentaci?n y Nutrici?n Nacional (PANN) 2000 was implementedby regular staff at local public health posts and consisted of offering a free micronutrient-fortifiedfood, Mi Papilla, for children aged 6 to 24 months in exchange for routine health check-ups forthe children. Our regression discontinuity design exploits the fact that at its inception, the PANN2000 was running for about 8 months only in the poorest communities (parroquias) of certainprovinces. Our main result is that the presence of the program reduced child mortality in cohortswith 8 months of differential exposure from a level of about 2.5 percent by 1 to 1.5 percentagepoints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Asthma prevalence in children and adolescents in Spain is 10-17%. It is the most common chronic illness during childhood. Prevalence has been increasing over the last 40 years and there is considerable evidence that, among other factors, continued exposure to cigarette smoke results in asthma in children. No statistical or simulation model exist to forecast the evolution of childhood asthma in Europe. Such a model needs to incorporate the main risk factors that can be managed by medical authorities, such as tobacco (OR = 1.44), to establish how they affect the present generation of children. A simulation model using conditional probability and discrete event simulation for childhood asthma was developed and validated by simulating realistic scenario. The parameters used for the model (input data) were those found in the bibliography, especially those related to the incidence of smoking in Spain. We also used data from a panel of experts from the Hospital del Mar (Barcelona) related to actual evolution and asthma phenotypes. The results obtained from the simulation established a threshold of a 15-20% smoking population for a reduction in the prevalence of asthma. This is still far from the current level in Spain, where 24% of people smoke. We conclude that more effort must be made to combat smoking and other childhood asthma risk factors, in order to significantly reduce the number of cases. Once completed, this simulation methodology can realistically be used to forecast the evolution of childhood asthma as a function of variation in different risk factors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Control of a chaotic system by homogeneous nonlinear driving, when a conditional Lyapunov exponent is zero, may give rise to special and interesting synchronizationlike behaviors in which the response evolves in perfect correlation with the drive. Among them, there are the amplification of the drive attractor and the shift of it to a different region of phase space. In this paper, these synchronizationlike behaviors are discussed, and demonstrated by computer simulation of the Lorentz model [E. N. Lorenz, J. Atmos. Sci. 20 130 (1963)] and the double scroll [T. Matsumoto, L. O. Chua, and M. Komuro, IEEE Trans. CAS CAS-32, 798 (1985)].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the derivation of new estimators and performance bounds for the problem of timing estimation of (linearly) digitally modulated signals. The conditional maximum likelihood (CML) method is adopted, in contrast to the classical low-SNR unconditional ML (UML) formulationthat is systematically applied in the literature for the derivationof non-data-aided (NDA) timing-error-detectors (TEDs). A new CML TED is derived and proved to be self-noise free, in contrast to the conventional low-SNR-UML TED. In addition, the paper provides a derivation of the conditional Cramér–Rao Bound (CRB ), which is higher (less optimistic) than the modified CRB (MCRB)[which is only reached by decision-directed (DD) methods]. It is shown that the CRB is a lower bound on the asymptotic statisticalaccuracy of the set of consistent estimators that are quadratic with respect to the received signal. Although the obtained boundis not general, it applies to most NDA synchronizers proposed in the literature. A closed-form expression of the conditional CRBis obtained, and numerical results confirm that the CML TED attains the new bound for moderate to high Eg/No.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose new methods for evaluating predictive densities that focus on the models' actual predictive ability in finite samples. The tests offer a simple way of evaluatingthe correct specification of predictive densities, either parametric or non-parametric.The results indicate that our tests are well sized and have good power in detecting mis-specification in predictive densities. An empirical application to the Survey ofProfessional Forecasters and a baseline Dynamic Stochastic General Equilibrium modelshows the usefulness of our methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of conditional stability constant is extended to the competitive binding of small molecules to heterogeneous surfaces or macromolecules via the introduction of the conditional affinity spectrum (CAS). The CAS describes the distribution of effective binding energies experienced by one complexing agent at a fixed concentration of the rest. We show that, when the multicomponent system can be described in terms of an underlying affinity spectrum [integral equation (IE) approach], the system can always be characterized by means of a CAS. The thermodynamic properties of the CAS and its dependence on the concentration of the rest of components are discussed. In the context of metal/proton competition, analytical expressions for the mean (conditional average affinity) and the variance (conditional heterogeneity) of the CAS as functions of pH are reported and their physical interpretation discussed. Furthermore, we show that the dependence of the CAS variance on pH allows for the analytical determination of the correlation coefficient between the binding energies of the metal and the proton. Nonideal competitive adsorption isotherm and Frumkin isotherms are used to illustrate the results of this work. Finally, the possibility of using CAS when the IE approach does not apply (for instance, when multidentate binding is present) is explored. © 2006 American Institute of Physics.