66 resultados para classification accuracy

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A prominent categorization of Indian classical music is the Hindustani and Carnatic traditions, the two styleshaving evolved under distinctly different historical andcultural influences. Both styles are grounded in the melodicand rhythmic framework of raga and tala. The styles differ along dimensions such as instrumentation,aesthetics and voice production. In particular, Carnatic music is perceived as being more ornamented. The hypothesisthat style distinctions are embedded in the melodic contour is validated via subjective classification tests. Melodic features representing the distinctive characteristicsare extracted from the audio. Previous work based on the extent of stable pitch regions is supported by measurements of musicians’ annotations of stable notes. Further, a new feature is introduced that captures thepresence of specific pitch modulations characteristic ofornamentation in Indian classical music. The combined features show high classification accuracy on a database of vocal music of prominent artistes. The misclassifications are seen to match actual listener confusions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we present a multi-stage classifier for magnetic resonance spectra of human brain tumours which is being developed as part of a decision support system for radiologists. The basic idea is to decompose a complex classification scheme into a sequence of classifiers, each specialising in different classes of tumours and trying to reproducepart of the WHO classification hierarchy. Each stage uses a particular set of classification features, which are selected using a combination of classical statistical analysis, splitting performance and previous knowledge.Classifiers with different behaviour are combined using a simple voting scheme in order to extract different error patterns: LDA, decision trees and the k-NN classifier. A special label named "unknown¿ is used when the outcomes of the different classifiers disagree. Cascading is alsoused to incorporate class distances computed using LDA into decision trees. Both cascading and voting are effective tools to improve classification accuracy. Experiments also show that it is possible to extract useful information from the classification process itself in order to helpusers (clinicians and radiologists) to make more accurate predictions and reduce the number of possible classification mistakes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Research into online addictions has increased substantially over the last decade, particularly amongst youth. This study adapted the Problematic Internet Entertainment Use Scale for Adolescents [PIEUSA] for use with a British population. The adapted scale was used to (i) validate the instrument for English-speaking adolescent samples, (ii) estimate the prevalence of adolescent online problem users and describe their profile, and (iii) assess the accuracy of the scale"s classification of symptomatology. A survey was administered to 1097 adolescents aged between 11 and 18 years. The results indicated that (i) reliability of the adapted scale was excellent; factor validity showed unidimensionality, and construct validity was adequate. The findings also indicated that (ii) prevalence of online problem users was 5.2% and that they were more likely to younger males that engaged in online gaming for more than two hours most days. The majority of online problem users displayed negative addictive symptoms, especially"loss of control" and"conflict". The adapted scale showed (iii) very good sensitivity, specificity, and classification accuracy, and was able to clearly differentiate between problem and non-problem users. The results suggest certain differences between adolescent and adult online problem users based in the predominance of slightly different psychological components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inductive learning aims at finding general rules that hold true in a database. Targeted learning seeks rules for the predictions of the value of a variable based on the values of others, as in the case of linear or non-parametric regression analysis. Non-targeted learning finds regularities without a specific prediction goal. We model the product of non-targeted learning as rules that state that a certain phenomenon never happens, or that certain conditions necessitate another. For all types of rules, there is a trade-off between the rule's accuracy and its simplicity. Thus rule selection can be viewed as a choice problem, among pairs of degree of accuracy and degree of complexity. However, one cannot in general tell what is the feasible set in the accuracy-complexity space. Formally, we show that finding out whether a point belongs to this set is computationally hard. In particular, in the context of linear regression, finding a small set of variables that obtain a certain value of R2 is computationally hard. Computational complexity may explain why a person is not always aware of rules that, if asked, she would find valid. This, in turn, may explain why one can change other people's minds (opinions, beliefs) without providing new information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Landscape classification tackles issues related to the representation and analysis of continuous and variable ecological data. In this study, a methodology is created in order to define topo-climatic landscapes (TCL) in the north-west of Catalonia (north-east of the Iberian Peninsula). TCLs relate the ecological behaviour of a landscape in terms of topography, physiognomy and climate, which compound the main drivers of an ecosystem. Selected variables are derived from different sources such as remote sensing and climatic atlas. The proposed methodology combines unsupervised interative cluster classification with a supervised fuzzy classification. As a result, 28 TCLs have been found for the study area which may be differentiated in terms of vegetation physiognomy and vegetation altitudinal range type. Furthermore a hierarchy among TCLs is set, enabling the merging of clusters and allowing for changes of scale. Through the topo-climatic landscape map, managers may identify patches with similar environmental conditions and asses at the same time the uncertainty involved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Es va realitzar el II Workshop en Tomografia Computeritzada (TC) a Monells. El primer dia es va dedicar íntegrament a la utilització del TC en temes de classificació de canals porcines, i el segon dia es va obrir a altres aplicacions del TC, ja sigui en animals vius o en diferents aspectes de qualitat de la carn o els productes carnis. Al workshop hi van assistir 45 persones de 12 països de la UE. The II workshop on the use of Computed Tomography (CT) in pig carcass classification. Other CT applications: live animals and meat technology was held in Monells. The first day it was dedicated to the use of CT in pig carcass classification. The segond day it was open to otehr CT applications, in live animals or in meat and meat products quality. There were 45 assistants of 12 EU countries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lean meat percentage (LMP) is the criterion for carcass classification and it must be measured on line objectively. The aim of this work was to compare the error of the prediction (RMSEP) of the LMP measured with the following different devices: Fat-O-Meat’er (FOM), UltraFOM (UFOM), AUTOFOM and -VCS2000. For this reason the same 99 carcasses were measured using all 4 apparatus and dissected according to the European Reference Method. Moreover a subsample of the carcasses (n=77) were fully scanned with a X-ray Computed Tomography equipment (CT). The RMSEP calculated with cross validation leave-one-out was lower for FOM and AUTOFOM (1.8% and 1.9%, respectively) and higher for UFOM and VCS2000 (2.3% for both devices). The error obtained with CT was the lowest (0.96%) in accordance with previous results, but CT cannot be used on line. It can be concluded that FOM and AUTOFOM presented better accuracy than UFOM and VCS2000.