8 resultados para calmodulin calmodulin-bingding protein

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family involved in signal transduction and the regulation of cellular proliferation and differentiation. It is also a calmodulin-binding protein. To examine the role of calmodulin in the regulation of EGFR, the effect of calmodulin antagonist, W-13, on the intracellular trafficking of EGFR and the MAPK signaling pathway was analyzed. W-13 did not alter the internalization of EGFR but inhibited its recycling and degradation, thus causing the accumulation of EGF and EGFR in enlarged early endosomal structures. In addition, we demonstrated that W-13 stimulated the tyrosine phosphorylation of EGFR and consequent recruitment of Shc adaptor protein with EGFR, presumably through inhibition of the calmodulin-dependent protein kinase II (CaM kinase II). W-13¿mediated EGFR phosphorylation was blocked by metalloprotease inhibitor, BB94, indicating a possible involvement of shedding in this process. However, MAPK activity was decreased by W-13; dissection of this signaling pathway showed that W-13 specifically interferes with Raf-1 activity. These data are consistent with the regulation of EGFR by calmodulin at several steps of the receptor signaling and trafficking pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ras proteins are small guanosine triphosphatases involved in the regulation of important cellular functions such as proliferation, differentiation, and apoptosis. Understanding the intracellular trafficking of Ras proteins is crucial to identify novel Ras signaling platforms. In this study, we report that epidermal growth factor triggers Kirsten Ras (KRas) translocation onto endosomal membranes (independently of calmodulin and protein kinase C phosphorylation) through a clathrin-dependent pathway. From early endosomes, KRas but not Harvey Ras or neuroblastoma Ras is sorted and transported to late endosomes (LEs) and lysosomes. Using yellow fluorescent protein¿Raf1 and the Raichu-KRas probe, we identified for the first time in vivo¿active KRas on Rab7 LEs, eliciting a signal output through Raf1. On these LEs, we also identified the p14¿MP1 scaffolding complex and activated extracellular signal-regulated kinase 1/2. Abrogation of lysosomal function leads to a sustained late endosomal mitogen-activated protein kinase signal output. Altogether, this study reveals novel aspects about KRas intracellular trafficking and signaling, shedding new light on the mechanisms controlling Ras regulation in the cell.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

It has been reported that phosphoinositide 3-kinase (PI 3-kinase) and its downstream target, protein kinase B (PKB), play a central role in the signaling of cell survival triggered by neurotrophins (NTs). In this report, we have analyzed the involvement of Ca2+ and calmodulin (CaM) in the activation of the PKB induced by NTs. We have found that reduction of intracellular Ca2+ concentration or functional blockade of CaM abolished NGF-induced activation of PKB in PC12 cells. Similar results were obtained in cultures of chicken spinal cord motoneurons treated with brain-derived neurotrophic factor (BDNF). Moreover, CaM inhibition prevented the cell survival triggered by NGF or BDNF. This effect was counteracted by the transient expression of constitutive active forms of the PKB, indicating that CaM regulates NT-induced cell survival through the activation of the PKB. We have investigated the mechanisms whereby CaM regulates the activation of the PKB, and we have found that CaM was necessary for the proper generation and/or accumulation of the products of the PI 3-kinase in intact cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Membrane-permeable calmodulin inhibitors, such as the napthalenesulfonamide derivatives W-7/W-13, trifluoperazine, and calmidazolium, are used widely to investigate the role of calcium/calmodulin (Ca2+/CaM) in living cells. If two chemically different inhibitors (e.g. W-7 and trifluoperazine) produce similar effects, investigators often assume the effects are due to CaM inhibition. Zeta potential measurements, however, show that these amphipathic weak bases bind to phospholipid vesicles at the same concentrations as they inhibit Ca 2 /CaM; this suggests that they also bind to the inner leaflet of the plasma membrane, reducing its negative electrostatic surface potential. This change will cause electrostatically bound clusters of basic residues on peripheral (e.g. Src and K-Ras4B) and integral (e.g. epidermal growth factor receptor (EGFR)) proteins to translocate from the membrane to the cytoplasm. We measured inhibitor-mediated translocation of a simple basic peptide corresponding to the calmodulin-binding juxtamembrane region of the EGFR on model membranes; W-7/W-13 causes translocation of this peptide from membrane to solution, suggesting that caution must be exercised when interpreting the results obtained with these inhibitors in living cells. We present evidence that they exert dual effects on autophosphorylation of EGFR;W-13 inhibits epidermal growth factordependent EGFR autophosphorylation under different experimental conditions, but in the absence of epidermal growth factor, W-13 stimulates autophosphorylation of the receptor in four different cell types. Our interpretation is that the former effect is due toW-13inhibition of Ca 2 /CaM, but thelatter results could be due to binding of W-13 to the plasma membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

c-Src is a non-receptor tyrosine kinase involved in numerous signal transduction pathways. The kinase,SH3 and SH2 domains of c-Src are attached to the membrane-anchoring SH4 domain through the flexible Unique domain. Here we show intra- and intermolecular interactions involving the Unique and SH3 domains suggesting the presence of a previously unrecognized additional regulation layer in c-Src. We have characterized lipid binding by the Unique and SH3 domains, their intramolecular interaction and its allosteric modulation by a SH3-binding peptide or by Calcium-loaded calmodulin binding to the Unique domain. We also show reduced lipid binding following phosphorylation at conserved sites of the Unique domain. Finally, we show that injection of full-length c-Src with mutations that abolish lipid binding by the Unique domain causes a strong in vivo phenotype distinct from that of wild-type c-Src in a Xenopus oocyte model system, confirming the functional role of the Unique domain in c-Src regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium signals trigger the translocation of the Prz1 transcription factor from the cytoplasm to the nucleus. The process is regulated by the calciumactivated phosphatase calcineurin, which activates Prz1 thereby maintaining active transcription during calcium signalling. When calcium signalling ceases, Prz1 is inactivated by phosphorylation and exported to the cytoplasm. In budding yeast and mammalian cells, different kinases have been reported to counter calcineurin activity and regulate nuclear export. Here, we show that the Ca2+/calmodulin-dependent kinase Cmk1 is first phosphorylated and activated by the newly identified kinase CaMKK2 homologue, Ckk2, in response to Ca2+. Then, active Cmk1 binds, phosphorylates and inactivates Prz1 transcription activity whilst at the same time cmk1 expression is enhanced by Prz1 in response to Ca2+. Furthermore, Cdc25 phosphatase is also phosphorylated by Cmk1, inducing cell cycle arrest in response to an increase in Ca2+. Moreover, cmk1 deletion shows a high tolerance to chronic exposure to Ca2+, due to the lack of cell cycle inhibition and elevated Prz1 activity. This work reveals that Cmk1 kinase activated by the newly identified Ckk2 counteracts calcineurin function by negatively regulating Prz1 activity which in turn is involved in activating cmk1 gene transcription. These results are the first insights into Cmk1 and Ckk2 function in Schizosaccharomyces pombe.