52 resultados para autonomous robots
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Un dels principals problemes de la interacció dels robots autònoms és el coneixement de l'escena. El reconeixement és fonamental per a solucionar aquest problema i permetre als robots interactuar en un escenari no controlat. En aquest document presentem una aplicació pràctica de la captura d'objectes, de la normalització i de la classificació de senyals triangulars i circulars. El sistema s'introdueix en el robot Aibo de Sony per a millorar-ne la interacció. La metodologia presentada s'ha comprobat en simulacions i problemes de categorització reals, com ara la classificació de senyals de trànsit, amb resultats molt prometedors.
Resumo:
Els eixams de robots distribuïts representen tot un món de possibilitats al camp de la microrobòtica, però existeixen pocs estudis que n'analitzin els comportaments socials i les interaccions entre robots autònoms distribuïts. Aquests comportaments han de permetre assolir de la manera més efectiva possible un bon resultat. Prenent com a base l'objectiu esmentat, aquest treball detalla diferents polítiques de cerca i de reconfiguració dels robots i estudia els seus comportaments per tal de determinar quins d'ells són més útils per solucionar un problema concret amb les plagues d'erugues i corcs als camps de cigroneres.
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
This work extends a previously developed research concerning about the use of local model predictive control in differential driven mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are briefly introduced. In this sense, monocular image data can be used to plan safety trajectories by using goal attraction potential fields
Resumo:
Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system
Estudi de comportaments socials d'aixams robòtics amb aplicació a la neteja d'espais no estructurats
Resumo:
La intel·ligència d’eixams és una branca de la intel·ligència artificial que està agafant molta força en els últims temps, especialment en el camp de la robòtica. En aquest projecte estudiarem el comportament social sorgit de les interaccions entre un nombre determinat de robots autònoms en el camp de la neteja de grans superfícies. Un cop triat un escenari i un robot que s’ajustin als requeriments del projecte, realitzarem una sèrie de simulacions a partir de diferents polítiques de cerca que ens permetran avaluar el comportament dels robots per unes condicions inicials de distribució dels robots i zones a netejar. A partir dels resultats obtinguts serem capaços de determinar quina configuració genera millors resultats.
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task
Resumo:
When unmanned underwater vehicles (UUVs) perform missions near the ocean floor, optical sensors can be used to improve local navigation. Video mosaics allow to efficiently process the images acquired by the vehicle, and also to obtain position estimates. We discuss in this paper the role of lens distortions in this context, proving that degenerate mosaics have their origin not only in the selected motion model or in registration errors, but also in the cumulative effect of radial distortion residuals. Additionally, we present results on the accuracy of different feature-based approaches for self-correction of lens distortions that may guide the choice of appropriate techniques for correcting distortions
Resumo:
This paper presents a complete control architecture that has been designed to fulfill predefined missions with an autonomous underwater vehicle (AUV). The control architecture has three levels of control: mission level, task level and vehicle level. The novelty of the work resides in the mission level, which is built with a Petri network that defines the sequence of tasks that are executed depending on the unpredictable situations that may occur. The task control system is composed of a set of active behaviours and a coordinator that selects the most appropriate vehicle action at each moment. The paper focuses on the design of the mission controller and its interaction with the task controller. Simulations, inspired on an industrial underwater inspection of a dam grate, show the effectiveness of the control architecture
Resumo:
A pioneer team of students of the University of Girona decided to design and develop an autonomous underwater vehicle (AUV) called ICTINEU-AUV to face the Student Autonomous Underwater Challenge-Europe (SAUC-E). The prototype has evolved from the initial computer aided design (CAD) model to become an operative AUV in the short period of seven months. The open frame and modular design principles together with the compatibility with other robots previously developed at the lab have provided the main design philosophy. Hence, at the robot's core, two networked computers give access to a wide set of sensors and actuators. The Gentoo/Linux distribution was chosen as the onboard operating system. A software architecture based on a set of distributed objects with soft real time capabilities was developed and a hybrid control architecture including mission control, a behavioural layer and a robust map-based localization algorithm made ICTINEU-AUV the winning entry
Resumo:
This paper compares two well known scan matching algorithms: the MbICP and the pIC. As a result of the study, it is proposed the MSISpIC, a probabilistic scan matching algorithm for the localization of an Autonomous Underwater Vehicle (AUV). The technique uses range scans gathered with a Mechanical Scanning Imaging Sonar (MSIS), and the robot displacement estimated through dead-reckoning with the help of a Doppler Velocity Log (DVL) and a Motion Reference Unit (MRU). The proposed method is an extension of the pIC algorithm. Its major contribution consists in: 1) using an EKF to estimate the local path traveled by the robot while grabbing the scan as well as its uncertainty and 2) proposing a method to group into a unique scan, with a convenient uncertainty model, all the data grabbed along the path described by the robot. The algorithm has been tested on an AUV guided along a 600m path within a marina environment with satisfactory results
Resumo:
We present a seabed profile estimation and following method for close proximity inspection of 3D underwater structures using autonomous underwater vehicles (AUVs). The presented method is used to determine a path allowing the AUV to pass its sensors over all points of the target structure, which is known as coverage path planning. Our profile following method goes beyond traditional seabed following at a safe altitude and exploits hovering capabilities of recent AUV developments. A range sonar is used to incrementally construct a local probabilistic map representation of the environment and estimates of the local profile are obtained via linear regression. Two behavior-based controllers use these estimates to perform horizontal and vertical profile following. We build upon these tools to address coverage path planning for 3D underwater structures using a (potentially inaccurate) prior map and following cross-section profiles of the target structure. The feasibility of the proposed method is demonstrated using the GIRONA 500 AUV both in simulation using synthetic and real-world bathymetric data and in pool trials
Resumo:
We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm