53 resultados para active-reactive OPF
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Background: Wine Saccharomyces cerevisiae strains, adapted to anaerobic must fermentations, suffer oxidative stress when they are grown under aerobic conditions for biomass propagation in the industrial process of active dry yeast production. Oxidative metabolism of sugars favors high biomass yields but also causes increased oxidation damage of cell components. The overexpression of the TRX2 gene, coding for a thioredoxin, enhances oxidative stress resistance in a wine yeast strain model. The thioredoxin and also the glutathione/glutaredoxin system constitute the most important defense against oxidation. Trx2p is also involved in the regulation of Yap1p-driven transcriptional response against some reactive oxygen species. Results: Laboratory scale simulations of the industrial active dry biomass production process demonstrate that TRX2 overexpression increases the wine yeast final biomass yield and also its fermentative capacity both after the batch and fed-batch phases. Microvinifications carried out with the modified strain show a fast start phenotype derived from its enhanced fermentative capacity and also increased content of beneficial aroma compounds. The modified strain displays an increased transcriptional response of Yap1p regulated genes and other oxidative stress related genes. Activities of antioxidant enzymes like Sod1p, Sod2p and catalase are also enhanced. Consequently, diminished oxidation of lipids and proteins is observed in the modified strain, which can explain the improved performance of the thioredoxin overexpressing strain. Conclusions: We report several beneficial effects of overexpressing the thioredoxin gene TRX2 in a wine yeast strain. We show that this strain presents an enhanced redox defense. Increased yield of biomass production process in TRX2 overexpressing strain can be of special interest for several industrial applications.
Resumo:
We evaluate the presence of effects from joining one of four active labour market programs in Romania in the late 1990s compared to the no-program state. Using rich follow-up survey data and propensity score matching, we find that three programs (training and retraining, self-employment assistance, and employment and relocation services) had success in improving participants' economic outcomes and were cost-beneficial from society's perspective. In contrast, public employment was found detrimental for the employment prospects of its participants.
Resumo:
This work investigates applying introspective reasoning to improve the performance of Case-Based Reasoning (CBR) systems, in both reactive and proactive fashion, by guiding learning to improve how a CBR system applies its cases and by identifying possible future system deficiencies. First we present our reactive approach, a new introspective reasoning model which enables CBR systems to autonomously learn to improve multiple facets of their reasoning processes in response to poor quality solutions. We illustrate our model’s benefits with experimental results from tests in an industrial design application. Then as for our proactive approach, we introduce a novel method for identifying regions in a case-base where the system gives low confidence solutions to possible future problems. Experimentation is provided for Zoology and Robo-Soccer domains and we argue how encountered regions of dubiosity help us to analyze the case-bases of a given CBR system.
Resumo:
L'objectiu d'aquest projecte és estudiar i implementar una solució segura de connectivitat sense fil a la infraestructura actual aprofitant al màxim tots els sistemes ja implementats, de manera que no pateixin greus canvis estructurals.
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
Personalització d'una distribució Linux tant de programari com d'integració a l'Active Directory del servei de domini de Windows Server 2008 i realització d'una imatge de la distribució personalitzada.
Resumo:
An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole
Resumo:
A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments
Resumo:
Purpose: To evaluate the suitability of an improved version of an automatic segmentation method based on geodesic active regions (GAR) for segmenting cerebral vasculature with aneurysms from 3D X-ray reconstruc-tion angiography (3DRA) and time of °ight magnetic resonance angiography (TOF-MRA) images available in the clinical routine.Methods: Three aspects of the GAR method have been improved: execution time, robustness to variability in imaging protocols and robustness to variability in image spatial resolutions. The improved GAR was retrospectively evaluated on images from patients containing intracranial aneurysms in the area of the Circle of Willis and imaged with two modalities: 3DRA and TOF-MRA. Images were obtained from two clinical centers, each using di®erent imaging equipment. Evaluation included qualitative and quantitative analyses ofthe segmentation results on 20 images from 10 patients. The gold standard was built from 660 cross-sections (33 per image) of vessels and aneurysms, manually measured by interventional neuroradiologists. GAR has also been compared to an interactive segmentation method: iso-intensity surface extraction (ISE). In addition, since patients had been imaged with the two modalities, we performed an inter-modality agreement analysis with respect to both the manual measurements and each of the two segmentation methods. Results: Both GAR and ISE di®ered from the gold standard within acceptable limits compared to the imaging resolution. GAR (ISE, respectively) had an average accuracy of 0.20 (0.24) mm for 3DRA and 0.27 (0.30) mm for TOF-MRA, and had a repeatability of 0.05 (0.20) mm. Compared to ISE, GAR had a lower qualitative error in the vessel region and a lower quantitative error in the aneurysm region. The repeatabilityof GAR was superior to manual measurements and ISE. The inter-modality agreement was similar between GAR and the manual measurements. Conclusions: The improved GAR method outperformed ISE qualitatively as well as quantitatively and is suitable for segmenting 3DRA and TOF-MRA images from clinical routine.
Resumo:
This workshop paper states that fostering active student participation both in face-to-face lectures / seminars and outside the classroom (personal and group study at home, the library, etc.) requires a certain level of teacher-led inquiry. The paper presents a set of strategies drawn from real practice in higher education with teacher-led inquiry ingredients that promote active learning. Thesepractices highlight the role of the syllabus, the importance of iterative learning designs, explicit teacher-led inquiry, and the implications of the context, sustainability and practitioners’ creativity. The strategies discussed in this paper can serve as input to the workshop as real cases that need to be represented in design and supported in enactment (with and without technologies).
Resumo:
In multiuser detection, the set of users active at any time may be unknown to the receiver. In these conditions, optimum reception consists of detecting simultaneously the set of activeusers and their data, problem that can be solved exactly by applying random-set theory (RST) and Bayesian recursions (BR). However, implementation of optimum receivers may be limited by their complexity, which grows exponentially with the number of potential users. In this paper we examine three strategies leading to reduced-complexity receivers.In particular, we show how a simple approximation of BRs enables the use of Sphere Detection (SD) algorithm, whichexhibits satisfactory performance with limited complexity.
Resumo:
Background: Metabolic flux profiling based on the analysis of distribution of stable isotope tracer in metabolites is an important method widely used in cancer research to understand the regulation of cell metabolism and elaborate new therapeutic strategies. Recently, we developed software Isodyn, which extends the methodology of kinetic modeling to the analysis of isotopic isomer distribution for the evaluation of cellular metabolic flux profile under relevant conditions. This tool can be applied to reveal the metabolic effect of proapoptotic drug edelfosine in leukemia Jurkat cell line, uncovering the mechanisms of induction of apoptosis in cancer cells. Results: The study of 13C distribution of Jukat cells exposed to low edelfosine concentration, which induces apoptosis in ¿5% of cells, revealed metabolic changes previous to the development of apoptotic program. Specifically, it was found that low dose of edelfosine stimulates the TCA cycle. These metabolic perturbations were coupled with an increase of nucleic acid synthesis de novo, which indicates acceleration of biosynthetic and reparative processes. The further increase of the TCA cycle fluxes, when higher doses of drug applied, eventually enhance reactive oxygen species (ROS) production and trigger apoptotic program. Conclusion: The application of Isodyn to the analysis of mechanism of edelfosine-induced apoptosis revealed primary drug-induced metabolic changes, which are important for the subsequent initiation of apoptotic program. Initiation of such metabolic changes could be exploited in anticancer therapy.
Resumo:
Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies.
Resumo:
We report on the study and modeling of the structural and optical properties of rib-loaded waveguides working in the 600-900-nm spectral range. A Si nanocrystal (Si-nc) rich SiO2 layer with nominal Si excess ranging from 10% to 20% was produced by quadrupole ion implantation of Si into thermal SiO2 formed on a silicon substrate. Si-ncs were precipitated by annealing at 1100°C, forming a 0.4-um-thick core layer in the waveguide. The Si content, the Si-nc density and size, the Si-nc emission, and the active layer effective refractive index were determined by dedicated experiments using x-ray photoelectron spectroscopy, Raman spectroscopy, energy-filtered transmission electron microscopy, photoluminescence and m-lines spectroscopy. Rib-loaded waveguides were fabricated by photolithographic and reactive ion etching processes, with patterned rib widths ranging from 1¿to¿8¿¿m. Light propagation in the waveguide was observed and losses of 11dB/cm at 633 and 780 nm were measured, modeled and interpreted.