64 resultados para X-band electron spin resonances

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between the structural (average size and density) and optoelectronic properties [band gap and photoluminescence (PL)] of Si nanocrystals embedded in SiO2 is among the essential factors in understanding their emission mechanism. This correlation has been difficult to establish in the past due to the lack of reliable methods for measuring the size distribution of nanocrystals from electron microscopy, mainly because of the insufficient contrast between Si and SiO2. With this aim, we have recently developed a successful method for imaging Si nanocrystals in SiO2 matrices. This is done by using high-resolution electron microscopy in conjunction with conventional electron microscopy in dark field conditions. Then, by varying the time of annealing in a large time scale we have been able to track the nucleation, pure growth, and ripening stages of the nanocrystal population. The nucleation and pure growth stages are almost completed after a few minutes of annealing time at 1100°C in N2 and afterward the ensemble undergoes an asymptotic ripening process. In contrast, the PL intensity steadily increases and reaches saturation after 3-4 h of annealing at 1100°C. Forming gas postannealing considerably enhances the PL intensity but only for samples annealed previously in less time than that needed for PL saturation. The effects of forming gas are reversible and do not modify the spectral shape of the PL emission. The PL intensity shows at all times an inverse correlation with the amount of Pb paramagnetic centers at the Si-SiO2 nanocrystal-matrix interfaces, which have been measured by electron spin resonance. Consequently, the Pb centers or other centers associated with them are interfacial nonradiative channels for recombination and the emission yield largely depends on the interface passivation. We have correlated as well the average size of the nanocrystals with their optical band gap and PL emission energy. The band gap and emission energy shift to the blue as the nanocrystal size shrinks, in agreement with models based on quantum confinement. As a main result, we have found that the Stokes shift is independent of the average size of nanocrystals and has a constant value of 0.26±0.03 eV, which is almost twice the energy of the Si¿O vibration. This finding suggests that among the possible channels for radiative recombination, the dominant one for Si nanocrystals embedded in SiO2 is a fundamental transition spatially located at the Si¿SiO2 interface with the assistance of a local Si-O vibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interplay between Rashba, Dresselhaus, and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum-rule approach. This solution allows us to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interplay between Rashba, Dresselhaus, and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum-rule approach. This solution allows us to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first example of a transition to long-range magnetic order in a purely dipolarly interacting molecular magnet. For the magnetic cluster compound Mn6O4Br4(Et2dbm)6, the anisotropy experienced by the total spin S=12 of each cluster is so small that spin-lattice relaxation remains fast down to the lowest temperatures, thus enabling dipolar order to occur within experimental times at Tc=0.16 K. In high magnetic fields, the relaxation rate becomes drastically reduced and the interplay between nuclear- and electron-spin lattice relaxation is revealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a complete Raman spectroscopic study in two structurally well-defined diradical species of different lengths incorporating oligo p-phenylene vinylene bridges between two polychlorinated triphenylmethyl radical units, a disposition that allows sizeable conjugation between the two radicals through and with the bridge. The spectroscopic data are interpreted and supported by quantum chemical calculations. We focus the attention on the Raman frequency changes, interpretable in terms of: (i) bridge length (conjugation length); (ii) bridge conformational structure; and (iii) electronic coupling between the terminal radical units with the bridge and through the bridge, which could delineate through-bond spin polarization, or spin delocalization. These items are addressed by using the"oligomer approach" in conjunction with pressure and temperature dependent Raman spectroscopic data. In summary, we have attempted to translate the well-known strategy to study the electron (charge) structure of π−conjugated molecules by Raman spectroscopy to the case of electron (spin) interactions via the spin delocalization mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent magnetotransport experiments of holes in InGaAs quantum dots [D. Reuter, P. Kailuweit, A. D. Wieck, U. Zeitler, O. Wibbelhoff, C. Meier, A. Lorke, and J. C. Maan, Phys. Rev. Lett. 94, 026808 (2005)] are interpreted by employing a multiband k¿p Hamiltonian, which considers the interaction between heavy hole and light hole subbands explicitly. No need of invoking an incomplete energy shell filling is required within this model. The crucial role we ascribe to the heavy hole-light hole interaction is further supported by one-band local-spin-density functional calculations, which show that Coulomb interactions do not induce any incomplete hole shell filling and therefore cannot account for the experimental magnetic field dispersion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) 13C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the 13C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the 13C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving 35,37Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the 35,37Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the 13C Larmor frequency further facilitates the polarization of the 13C nuclei by spin diffusion. Calculation of the 13C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We compute the shift in the frequency of the spin resonance in a solid that rotates in the field of a circularly polarized electromagnetic wave. Electron-spin resonance, nuclear magnetic resonance, and ferromagnetic resonance are considered. We show that contrary to the case of the rotating LC circuit, the shift in the frequency of the spin resonance has strong dependence on the symmetry of the receiver. The shift due to rotation occurs only when rotational symmetry is broken by the anisotropy of the gyromagnetic tensor, by the shape of the body or by magnetocrystalline anisotropy. General expressions for the resonance frequency and power absorption are derived and implications for experiment are discussed.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We use the analogy between scattering of a wave from a potential, and the precession of a spin-half particle in a magnetic field, to gain insight into the design of an antireflection coating for electrons in a semiconductor superlattice. It is shown that the classic recipes derived for optics are generally not applicable due to the different dispersion law for electrons. Using the stability conditions we show that a Poisson distribution of impedance steps is a better approximation than is a Gaussian distribution. Examples are given of filters with average transmissivity exceeding 95% over an allowed band.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our new simple method for calculating accurate Franck-Condon factors including nondiagonal (i.e., mode-mode) anharmonic coupling is used to simulate the C2H4+X2B 3u←C2H4X̃1 Ag band in the photoelectron spectrum. An improved vibrational basis set truncation algorithm, which permits very efficient computations, is employed. Because the torsional mode is highly anharmonic it is separated from the other modes and treated exactly. All other modes are treated through the second-order perturbation theory. The perturbation-theory corrections are significant and lead to a good agreement with experiment, although the separability assumption for torsion causes the C2 D4 results to be not as good as those for C2 H4. A variational formulation to overcome this circumstance, and deal with large anharmonicities in general, is suggested

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of InxAl12xAs samples (0.51,x,0.55) coherently grown on InP was studied in order to measure the band-gap energy of the lattice matched composition. As the substrate is opaque to the relevant photon energies, a method is developed to calculate the optical absorption coefficient from the photoluminescence excitation spectra. The effect of strain on the band-gap energy has been taken into account. For x50.532, at 14 K we have obtained Eg05154966 meV. © 1997 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We design optimal band pass filters for electrons in semiconductor heterostructures, under a uniform applied electric field. The inner cells are chosen to provide a desired transmission window. The outer cells are then designed to transform purely incoming or outgoing waves into Bloch states of the inner cells. The transfer matrix is interpreted as a conformal mapping in the complex plane, which allows us to write constraints on the outer cell parameters, from which physically useful values can be obtained.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have investigated the dipole charge- and spin-density response of few-electron two-dimensional concentric nanorings as a function of the intensity of a erpendicularly applied magnetic field. We show that the dipole response displays signatures associated with the localization of electron states in the inner and outer ring favored by the perpendicularly applied magnetic field. Electron localization produces a more fragmented spectrum due to the appearance of additional edge excitations in the inner and outer ring.