152 resultados para White noise
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We consider the effects of external, multiplicative white noise on the relaxation time of a general representation of a bistable system from the points of view provided by two, quite different, theoretical approaches: the classical Stratonovich decoupling of correlations and the new method due to Jung and Risken. Experimental results, obtained from a bistable electronic circuit, are compared to the theoretical predictions. We show that the phenomenon of critical slowing down appears as a function of the noise parameters, thereby providing a correct characterization of a noise-induced transition.
Resumo:
A Brownian pump of particles powered by a stochastic flashing ratchet mechanism is studied. The pumping device is embedded in a finite region and bounded by particle reservoirs. In the steady state, we exactly calculate the spatial density profile, the concentration ratio between both reservoirs and the particle flux. We propose a simulation framework for the consistent evaluation of such observable quantities.
Resumo:
We obtain the exact analytical expression, up to a quadrature, for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise from a region (0,L) in space. We obtain a completely explicit expression for T(x,0) and discuss the dependence of T(x,v) as a function of the size L of the region. We develop a new method that may be used to solve other exit time problems.
Exact solution to the exit-time problem for an undamped free particle driven by Gaussian white noise
Resumo:
In a recent paper [Phys. Rev. Lett. 75, 189 (1995)] we have presented the exact analytical expression for the mean exit time, T(x,v), of a free inertial process driven by Gaussian white noise out of a region (0,L) in space. In this paper we give a detailed account of the method employed and present results on asymptotic properties and averages of T(x,v).
Resumo:
We consider systems described by nonlinear stochastic differential equations with multiplicative noise. We study the relaxation time of the steady-state correlation function as a function of noise parameters. We consider the white- and nonwhite-noise case for a prototype model for which numerical data are available. We discuss the validity of analytical approximation schemes. For the white-noise case we discuss the results of a projector-operator technique. This discussion allows us to give a generalization of the method to the non-white-noise case. Within this generalization, we account for the growth of the relaxation time as a function of the correlation time of the noise. This behavior is traced back to the existence of a non-Markovian term in the equation for the correlation function.
Resumo:
A retarded backward equation for a non-Markovian process induced by dichotomous noise (the random telegraphic signal) is deduced. The mean-first-passage time of this process is exactly obtained. The Gaussian white noise and the white shot noise limits are studied. Explicit physical results in first approximation are evaluated.
Resumo:
We develop an algorithm to simulate a Gaussian stochastic process that is non-¿-correlated in both space and time coordinates. The colored noise obeys a linear reaction-diffusion Langevin equation with Gaussian white noise. This equation is exactly simulated in a discrete Fourier space.
Resumo:
We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue measure.
Resumo:
A recent paper by J. Heinrichs [Phys. Rev. E 48, 2397 (1993)] presents analytic expressions for the first-passage times and the survival probability for a particle moving in a field of random correlated forces. We believe that the analysis there is flawed due to an improper use of boundary conditions. We compare that result, in the white noise limit, with the known exact expression of the mean exit time.
Resumo:
We consider mean-first-passage times and transition rates in bistable systems driven by white shot noise. We obtain closed analytical expressions, asymptotic approximations, and numerical simulations in two cases of interest: (i) jumps sizes exponentially distributed and (ii) jumps of the same size.
Resumo:
By means of Malliavin Calculus we see that the classical Hull and White formulafor option pricing can be extended to the case where the noise driving thevolatility process is correlated with the noise driving the stock prices. Thisextension will allow us to construct option pricing approximation formulas.Numerical examples are presented.
Resumo:
The general theory of nonlinear relaxation times is developed for the case of Gaussian colored noise. General expressions are obtained and applied to the study of the characteristic decay time of unstable states in different situations, including white and colored noise, with emphasis on the distributed initial conditions. Universal effects of the coupling between colored noise and random initial conditions are predicted.
Resumo:
We re-examine the theoretical concept of a production function for cognitive achievement, and argue that an indirect production function that depends upon the variables that constrain parents' choices is both moretractable from an econometric point of view, and more interesting from an economic point of view than is a direct production function that depends upon a detailed list of direct inputs such as number of books in the household. We estimate flexible econometric models of indirect production functions for two achievement measures from the Woodcock-Johnson Revised battery, using data from two waves of the Child Development Supplement to the PSID. Elasticities of achievement measures with respect to family income and parents' educational levels are positive and significant. Gaps between scores of black and white children narrow or remain constant as children grow older, a result that differs from previous findings in the literature. The elasticities of achievement scores with respect to family income are substantially higher for children of black families, and there are some notable difference in elasticities with respect to parents' educational levels across blacks and whites.
Resumo:
We give sufficient conditions for existence, uniqueness and ergodicity of invariant measures for Musiela's stochastic partial differential equation with deterministic volatility and a Hilbert space valued driving Lévy noise. Conditions for the absence of arbitrage and for the existence of mild solutions are also discussed.