74 resultados para White’s estimator
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The work presented evaluates the statistical characteristics of regional bias and expected error in reconstructions of real positron emission tomography (PET) data of human brain fluoro-deoxiglucose (FDG) studies carried out by the maximum likelihood estimator (MLE) method with a robust stopping rule, and compares them with the results of filtered backprojection (FBP) reconstructions and with the method of sieves. The task of evaluating radioisotope uptake in regions-of-interest (ROIs) is investigated. An assessment of bias and variance in uptake measurements is carried out with simulated data. Then, by using three different transition matrices with different degrees of accuracy and a components of variance model for statistical analysis, it is shown that the characteristics obtained from real human FDG brain data are consistent with the results of the simulation studies.
Resumo:
This paper presents a new respiratory impedance estimator to minimize the error due to breathing. Its practical reliability was evaluated in a simulation using realistic signals. These signals were generated by superposing pressure and flow records obtained in two conditions: 1) when applying forced oscillation to a resistance- inertance- elastance (RIE) mechanical model; 2) when healthy subjects breathed through the unexcited forced oscillation generator. Impedances computed (4-32 Hz) from the simulated signals with the new estimator resulted in a mean value which was scarcely biased by the added breathing (errors less than 1 percent in the mean R, I , and E ) and had a small variability (coefficients of variation of R, I, and E of 1.3, 3.5, and 9.6 percent, respectively). Our results suggest that the proposed estimator reduces the error in measurement of respiratory impedance without appreciable extracomputational cost.
Resumo:
This paper addresses the estimation of the code-phase(pseudorange) and the carrier-phase of the direct signal received from a direct-sequence spread-spectrum satellite transmitter. Thesignal is received by an antenna array in a scenario with interferenceand multipath propagation. These two effects are generallythe limiting error sources in most high-precision positioning applications.A new estimator of the code- and carrier-phases is derivedby using a simplified signal model and the maximum likelihood(ML) principle. The simplified model consists essentially ofgathering all signals, except for the direct one, in a component withunknown spatial correlation. The estimator exploits the knowledgeof the direction-of-arrival of the direct signal and is much simplerthan other estimators derived under more detailed signal models.Moreover, we present an iterative algorithm, that is adequate for apractical implementation and explores an interesting link betweenthe ML estimator and a hybrid beamformer. The mean squarederror and bias of the new estimator are computed for a numberof scenarios and compared with those of other methods. The presentedestimator and the hybrid beamforming outperform the existingtechniques of comparable complexity and attains, in manysituations, the Cramér–Rao lower bound of the problem at hand.
Resumo:
Difference-in-Difference (DiD) methods are being increasingly used to analyze the impact of mergers on pricing and other market equilibrium outcomes. Using evidence from an exogenous merger between two retail gasoline companies in a specific market in Spain, this paper shows how concentration did not lead to a price increase. In fact, the conjectural variation model concludes that the existence of a collusive agreement before and after the merger accounts for this result, rather than the existence of efficient gains. This result may explain empirical evidence reported in the literature according to which mergers between firms do not have significant effects on prices.
Resumo:
The Hausman (1978) test is based on the vector of differences of two estimators. It is usually assumed that one of the estimators is fully efficient, since this simplifies calculation of the test statistic. However, this assumption limits the applicability of the test, since widely used estimators such as the generalized method of moments (GMM) or quasi maximum likelihood (QML) are often not fully efficient. This paper shows that the test may easily be implemented, using well-known methods, when neither estimator is efficient. To illustrate, we present both simulation results as well as empirical results for utilization of health care services.
Resumo:
We re-examine the theoretical concept of a production function for cognitive achievement, and argue that an indirect production function that depends upon the variables that constrain parents' choices is both moretractable from an econometric point of view, and more interesting from an economic point of view than is a direct production function that depends upon a detailed list of direct inputs such as number of books in the household. We estimate flexible econometric models of indirect production functions for two achievement measures from the Woodcock-Johnson Revised battery, using data from two waves of the Child Development Supplement to the PSID. Elasticities of achievement measures with respect to family income and parents' educational levels are positive and significant. Gaps between scores of black and white children narrow or remain constant as children grow older, a result that differs from previous findings in the literature. The elasticities of achievement scores with respect to family income are substantially higher for children of black families, and there are some notable difference in elasticities with respect to parents' educational levels across blacks and whites.
Resumo:
Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Since conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. Monte Carlo results show that the estimator performs well in comparison to other estimators that have been proposed for estimation of general DLV models.
Resumo:
This paper analyses intergenerational earnings mobility in Spain correcting for different selection biases. We address the co-residence selection problem by combining information from two samples and using the two-sample two-stage least square estimator. We find a small decrease in elasticity when we move to younger cohorts. Furthermore, we find a higher correlation in the case of daughters than in the case of sons; however, when we consider the employment selection in the case of daughters, by adopting a Heckman-type correction method, the diference between sons and daughters disappears. By decomposing the sources of earnings elasticity across generations, we find that the correlation between child's and father's occupation is the most important component. Finally, quantile regressions estimates show that the influence of the father's earnings is greater when we move to the lower tail of the offspring's earnings distribution, especially in the case of daughters' earnings.
Resumo:
Properties of GMM estimators for panel data, which have become very popular in the empirical economic growth literature, are not well known when the number of individuals is small. This paper analyses through Monte Carlo simulations the properties of various GMM and other estimators when the number of individuals is the one typically available in country growth studies. It is found that, provided that some persistency is present in the series, the system GMM estimator has a lower bias and higher efficiency than all the other estimators analysed, including the standard first-differences GMM estimator.
Resumo:
I construct "homogeneous" series of GVA at current and constant prices, employment and population for the Spain and its regions covering the period 1955-2007. The series are obtained by linking the Regional Accounts of the National Statistical Institute with the series constructed by Julio Alcaide and his team for the BBVA Foundation. The "switching point" at which this last source stops being used as a reference to construct the linked series is determined using a procedure that allows me to estimate which of the two competing series would produce an estimator with the lowest MSE when it is used as dependent variable in a regression on an arbitrary independent variable. To the extent that it is possible, the difference between the two series found at the point of linkage is distributed between the initial levels of the older series and its subsequent growth using external estimates of the relevant variables at the beginning of the sample period.
Resumo:
Consider a model with parameter phi, and an auxiliary model with parameter theta. Let phi be a randomly sampled from a given density over the known parameter space. Monte Carlo methods can be used to draw simulated data and compute the corresponding estimate of theta, say theta_tilde. A large set of tuples (phi, theta_tilde) can be generated in this manner. Nonparametric methods may be use to fit the function E(phi|theta_tilde=a), using these tuples. It is proposed to estimate phi using the fitted E(phi|theta_tilde=theta_hat), where theta_hat is the auxiliary estimate, using the real sample data. This is a consistent and asymptotically normally distributed estimator, under certain assumptions. Monte Carlo results for dynamic panel data and vector autoregressions show that this estimator can have very attractive small sample properties. Confidence intervals can be constructed using the quantiles of the phi for which theta_tilde is close to theta_hat. Such confidence intervals are found to have very accurate coverage.
Resumo:
Abstract. Given a model that can be simulated, conditional moments at a trial parameter value can be calculated with high accuracy by applying kernel smoothing methods to a long simulation. With such conditional moments in hand, standard method of moments techniques can be used to estimate the parameter. Because conditional moments are calculated using kernel smoothing rather than simple averaging, it is not necessary that the model be simulable subject to the conditioning information that is used to define the moment conditions. For this reason, the proposed estimator is applicable to general dynamic latent variable models. It is shown that as the number of simulations diverges, the estimator is consistent and a higher-order expansion reveals the stochastic difference between the infeasible GMM estimator based on the same moment conditions and the simulated version. In particular, we show how to adjust standard errors to account for the simulations. Monte Carlo results show how the estimator may be applied to a range of dynamic latent variable (DLV) models, and that it performs well in comparison to several other estimators that have been proposed for DLV models.
Resumo:
This is a guide that explains how to use software that implements the simulated nonparametric moments (SNM) estimator proposed by Creel and Kristensen (2009). The guide shows how results of that paper may easily be replicated, and explains how to install and use the software for estimation of simulable econometric models.
Resumo:
We use a difference-in-difference estimator to examine the effects of a merger involving three airlines. The novelty lies in the examination of this operation in two distinct scenarios: (1) on routes where two low-cost carriers and (2) on routes where a network and one of the low-cost airlines had previously been competing. We report a reduction in frequencies but no substantial effect on prices in the first scenario, while in the second we report an increase in prices but no substantial effect on frequencies. These results may be attributed to the differences in passenger types flying on these routes.