101 resultados para Tumors Growth Mathematical models
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
This paper analyzes the issue of the interiority of the optimal population growth rate in a two-period overlapping generations model with endogenous fertility. Using Cobb-Douglas utility and production functions, we show that the introduction of a cost of raising children allows for the possibility of the existence of an interior global maximum in the planner¿s problem, contrary to the exogenous fertility case
Resumo:
This paper analyzes the issue of the interiority of the optimal population growth rate in a two-period overlapping generations model with endogenous fertility. Using Cobb-Douglas utility and production functions, we show that the introduction of a cost of raising children allows for the possibility of the existence of an interior global maximum in the planner¿s problem, contrary to the exogenous fertility case
Resumo:
This article analyzes empirically the main existing theories on income and population city growth: increasing returns to scale, locational fundamentals and random growth. To do this we implement a threshold nonlinearity test that extends standard linear growth regression models to a dataset on urban, climatological and macroeconomic variables on 1,175 U.S. cities. Our analysis reveals the existence of increasing returns when per-capita income levels are beyond $19; 264. Despite this, income growth is mostly explained by social and locational fundamentals. Population growth also exhibits two distinct equilibria determined by a threshold value of 116,300 inhabitants beyond which city population grows at a higher rate. Income and population growth do not go hand in hand, implying an optimal level of population beyond which income growth stagnates or deteriorates
Resumo:
Quantitative or algorithmic trading is the automatization of investments decisions obeying a fixed or dynamic sets of rules to determine trading orders. It has increasingly made its way up to 70% of the trading volume of one of the biggest financial markets such as the New York Stock Exchange (NYSE). However, there is not a signi cant amount of academic literature devoted to it due to the private nature of investment banks and hedge funds. This projects aims to review the literature and discuss the models available in a subject that publications are scarce and infrequently. We review the basic and fundamental mathematical concepts needed for modeling financial markets such as: stochastic processes, stochastic integration and basic models for prices and spreads dynamics necessary for building quantitative strategies. We also contrast these models with real market data with minutely sampling frequency from the Dow Jones Industrial Average (DJIA). Quantitative strategies try to exploit two types of behavior: trend following or mean reversion. The former is grouped in the so-called technical models and the later in the so-called pairs trading. Technical models have been discarded by financial theoreticians but we show that they can be properly cast into a well defined scientific predictor if the signal generated by them pass the test of being a Markov time. That is, we can tell if the signal has occurred or not by examining the information up to the current time; or more technically, if the event is F_t-measurable. On the other hand the concept of pairs trading or market neutral strategy is fairly simple. However it can be cast in a variety of mathematical models ranging from a method based on a simple euclidean distance, in a co-integration framework or involving stochastic differential equations such as the well-known Ornstein-Uhlenbeck mean reversal ODE and its variations. A model for forecasting any economic or financial magnitude could be properly defined with scientific rigor but it could also lack of any economical value and be considered useless from a practical point of view. This is why this project could not be complete without a backtesting of the mentioned strategies. Conducting a useful and realistic backtesting is by no means a trivial exercise since the \laws" that govern financial markets are constantly evolving in time. This is the reason because we make emphasis in the calibration process of the strategies' parameters to adapt the given market conditions. We find out that the parameters from technical models are more volatile than their counterpart form market neutral strategies and calibration must be done in a high-frequency sampling manner to constantly track the currently market situation. As a whole, the goal of this project is to provide an overview of a quantitative approach to investment reviewing basic strategies and illustrating them by means of a back-testing with real financial market data. The sources of the data used in this project are Bloomberg for intraday time series and Yahoo! for daily prices. All numeric computations and graphics used and shown in this project were implemented in MATLAB^R scratch from scratch as a part of this thesis. No other mathematical or statistical software was used.
Resumo:
The introduction of an infective-infectious period on the geographic spread of epidemics is considered in two different models. The classical evolution equations arising in the literature are generalized and the existence of epidemic wave fronts is revised. The asymptotic speed is obtained and improves previous results for the Black Death plague
Resumo:
The front speed of the Neolithic (farmer) spread in Europe decreased as it reached Northern latitudes, where the Mesolithic (huntergatherer) population density was higher. Here, we describe a reaction diffusion model with (i) an anisotropic dispersion kernel depending on the Mesolithicpopulation density gradient and (ii) a modified population growth equation. Both effects are related to the space available for the Neolithic population. The model is able to explain the slowdown of the Neolithic front as observed from archaeological data
Resumo:
Glioblastomas are highly diffuse, malignant tumors that have so far evaded clinical treatment. The strongly invasive behavior of cells in these tumors makes them very resistant to treatment, and for this reason both experimental and theoretical efforts have been directed toward understanding the spatiotemporal pattern of tumor spreading. Although usual models assume a standard diffusion behavior, recent experiments with cell cultures indicate that cells tend to move in directions close to that of glioblastoma invasion, thus indicating that a biasedrandom walk model may be much more appropriate. Here we show analytically that, for realistic parameter values, the speeds predicted by biased dispersal are consistent with experimentally measured data. We also find that models beyond reaction–diffusion–advection equations are necessary to capture this substantial effect of biased dispersal on glioblastoma spread
Resumo:
Populations of phase oscillators interacting globally through a general coupling function f(x) have been considered. We analyze the conditions required to ensure the existence of a Lyapunov functional giving close expressions for it in terms of a generating function. We have also proposed a family of exactly solvable models with singular couplings showing that it is possible to map the synchronization phenomenon into other physical problems. In particular, the stationary solutions of the least singular coupling considered, f(x) = sgn(x), have been found analytically in terms of elliptic functions. This last case is one of the few nontrivial models for synchronization dynamics which can be analytically solved.
Resumo:
The present paper is aimed at providing a general strategic overview of the existing theoretical models that have applications in the field of financial innovation. Whereas most financialdevelopments have relied upon traditional economic tools, a new stream of research is defining a novel paradigm in which mathematical models from diverse scientific disciplines are being applied to conceptualize and explain economic and financial behavior. Indeed, terms such as ‘econophysics’ or ‘quantum finance’ have recently appeared to embrace efforts in this direction. As a first contact with such research, the project will present a brief description of some of the main theoretical models that have applications in finance and economics, and will try to present, if possible, potential new applications to particular areas in financial analysis, or new applicable models. As a result, emphasiswill be put on the implications of this research for the financial sector and its future dynamics.
Resumo:
We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined
Resumo:
We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined
Resumo:
Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.
Resumo:
We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined
Resumo:
The aim of this study is to define a new statistic, PVL, based on the relative distance between the likelihood associated with the simulation replications and the likelihood of the conceptual model. Our results coming from several simulation experiments of a clinical trial show that the PVL statistic range can be a good measure of stability to establish when a computational model verifies the underlying conceptual model. PVL improves also the analysis of simulation replications because only one statistic is associated with all the simulation replications. As well it presents several verification scenarios, obtained by altering the simulation model, that show the usefulness of PVL. Further simulation experiments suggest that a 0 to 20 % range may define adequate limits for the verification problem, if considered from the viewpoint of an equivalence test.
Resumo:
Aquest projecte proposa materials didàctics per a un nou plantejament de les assignatures de Matemàtiques dels primers cursos de Ciències Empresarials i d'Enginyeria Tècnica, més acord amb el procés de convergència europea, basat en la realització de projectes que anomenem “Tallers de Modelització Matemàtica” (TMM) en els quals: (1) Els alumnes parteixen de situacions i problemes reals per als quals han de construir per sí mateixos els models matemàtics més adients i, a partir de la manipulació adequada d’aquests models, poden obtenir la informació necessària per donar-los resposta. (2) El treball de construcció, experimentació i avaluació dels models es realitza amb el suport de la calculadora simbòlica Wiris i del full de càlcul Excel com a instruments “normalitzats” del treball matemàtic d’estudiants i professors. (3) S’adapten els programes de les assignatures de matemàtiques de primer curs per tal de poder-les associar a un petit nombre de Tallers que parteixen de situacions adaptades a cada titulació. L’assignatura de Matemàtiques per a les Ciències Empresarials s’articula entorn de dos tallers independents: “Matrius de transició” pel que fa a l’àlgebra lineal i “Previsió de vendes” per a la modelització funcional en una variable. L’assignatura de Matemàtiques per a l’Enginyeria s’articula entorn d’un únic taller, “Models de poblacions”, que abasta la majoria de continguts del curs: successions i models funcionals en una variable, àlgebra lineal i equacions diferencials. Un conjunt d’exercicis interactius basats en la calculadora simbòlica WIRIS (Wiris-player) serveix de suport per al treball tècnic imprescindible per al desenvolupament de les dues assignatures. L’experimentació d’aquests tallers durant 2 cursos consecutius (2006/07 i 2007/08) en dues universitats catalanes (URL i UAB) ha posat en evidència tant els innegables avantatges del nou dispositiu docent per a l’aprenentatge dels estudiants, així com les restriccions institucionals que actualment dificulten la seva gestió i difusió.