45 resultados para Transformation, Bacterial
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Els bacteris són la forma dominant de vida del planeta: poden sobreviure en medis molt adversos, i en alguns casos poden generar substàncies que quan les ingerim ens són tòxiques. La seva presència en els aliments fa que la microbiologia predictiva sigui un camp imprescindible en la microbiologia dels aliments per garantir la seguretat alimentària. Un cultiu bacterià pot passar per quatre fases de creixement: latència, exponencial, estacionària i de mort. En aquest treball s’ha avançat en la comprensió dels fenòmens intrínsecs a la fase de latència, que és de gran interès en l’àmbit de la microbiologia predictiva. Aquest estudi, realitzat al llarg de quatre anys, s’ha abordat des de la metodologia Individual-based Modelling (IbM) amb el simulador INDISIM (INDividual DIScrete SIMulation), que ha estat millorat per poder fer-ho. INDISIM ha permès estudiar dues causes de la fase de latència de forma separada, i abordar l’estudi del comportament del cultiu des d’una perspectiva mesoscòpica. S’ha vist que la fase de latència ha de ser estudiada com un procés dinàmic, i no definida per un paràmetre. L’estudi de l’evolució de variables com la distribució de propietats individuals entre la població (per exemple, la distribució de masses) o la velocitat de creixement, han permès distingir dues etapes en la fase de latència, inicial i de transició, i aprofundir en la comprensió del que passa a nivell cel•lular. S’han observat experimentalment amb citometria de flux diversos resultats previstos per les simulacions. La coincidència entre simulacions i experiments no és trivial ni casual: el sistema estudiat és un sistema complex, i per tant la coincidència del comportament al llarg del temps de diversos paràmetres interrelacionats és un aval a la metodologia emprada en les simulacions. Es pot afirmar, doncs, que s’ha verificat experimentalment la bondat de la metodologia INDISIM.
Resumo:
The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on E. coli have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble process performed by bacteria. This model can account for recent experimental observations with E. coli. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered motion versus dispersion). In addition we can capture quantitatively the main characteristics of the pulse such as the speed and the relative size of tails. This work opens several experimental and theoretical perspectives. Coefficients at the macroscopic level are derived from considerations at the cellular scale. For instance the stiffness of the signal integration process turns out to have a strong effect on collective motion. Furthermore the bottom-up scaling allows to perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive tool for the investigation of bacterial collective motion.
Resumo:
This paper analyzes the role of the energy transformation index and of final energy consumption per GDP unit in the disparities in energy intensity across countries. In that vein, we use a Theil decomposition approach to analyze global primary energy intensity inequality as well as inequality across different regions of the world and inequality within these regions. The paper first demonstrates the pre-eminence of divergence in final energy consumption per GDP unit in explaining global primary energy intensity inequality and its evolution during the 1971-2006 period. Secondly, it shows the lower (albeit non negligible) impact of the transformation index in global primary energy inequality. Thirdly, the relevance of regions as unit of analysis in studying crosscountry energy intensity inequality and their explanatory factors is highlighted. And finally, how regions around the world differ as to the relevance of the energy transformation index in explaining primary energy intensity inequality.
Resumo:
A cultivation-independent approach based on polymerase chain reaction (PCR)-amplified partial small subunit rRNA genes was used to characterize bacterial populations in the surface soil of a commercial pear orchard consisting of different pear cultivars during two consecutive growing seasons. Pyrus communis L. cvs Blanquilla, Conference, and Williams are among the most widely cultivated cultivars in Europe and account for the majority of pear production in Northeastern Spain. To assess the heterogeneity of the community structure in response to environmental variables and tree phenology, bacterial populations were examined using PCR-denaturing gradient gel electrophoresis (DGGE) followed by cluster analysis of the 16S ribosomal DNA profiles by means of the unweighted pair group method with arithmetic means. Similarity analysis of the band patterns failed to identify characteristic fingerprints associated with the pear cultivars. Both environmentally and biologically based principal-component analyses showed that the microbial communities changed significantly throughout the year depending on temperature and, to a lesser extent, on tree phenology and rainfall. Prominent DGGE bands were excised and sequenced to gain insight into the identities of the predominant bacterial populations. Most DGGE band sequences were related to bacterial phyla, such as Bacteroidetes, Cyanobacteria, Acidobacteria, Proteobacteria, Nitrospirae, and Gemmatimonadetes, previously associated with typical agronomic crop environments
Resumo:
Bacteria are highly diverse and drive a bulk of ecosystem processes. Analysis of relationships between diversity and single specific ecosystem processes neglects the possibility that different species perform multiple functions at the same time. The degradation of dissolved organic carbon (DOC) followed by respiration is a key bacterial function that is modulated by the availability of DOC and the capability to produce extracellular enzymes. In freshwater ecosystems, biofilms are metabolic hotspots and major sites of DOC degradation. We manipulated the diversity of biofilm forming communities which were fed with DOC differing in availability. We characterized community composition using molecular fingerprinting (T-RFLP) and measured functioning as oxygen consumption rates, the conversion of DOC in the medium, bacterial abundance and the activities of five specific enzymes. Based on assays of the extracellular enzyme activity, we calculated how the likelihood of sustaining multiple functions was affected by reduced diversity. Carbon source and biofilm age were strong drivers of community functioning, and we demonstrate how the likelihood of sustaining multifunctionality decreases with decreasing diversity
Resumo:
This file contains the transformtion rules in SWRL to translate formal specifications of two lower ontology levels (patterns and organization) to the upper level (implementation according to the OKI specification).
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
Multiexponential decays may contain time-constants differing in several orders of magnitudes. In such cases, uniform sampling results in very long records featuring a high degree of oversampling at the final part of the transient. Here, we analyze a nonlinear time scale transformation to reduce the total number of samples with minimum signal distortion, achieving an important reduction of the computational cost of subsequent analyses. We propose a time-varying filter whose length is optimized for minimum mean square error
Resumo:
[cat] Es presenta un estimador nucli transformat que és adequat per a distribucions de cua pesada. Utilitzant una transformació basada en la distribució de probabilitat Beta l’elecció del paràmetre de finestra és molt directa. Es presenta una aplicació a dades d’assegurances i es mostra com calcular el Valor en Risc.
Resumo:
The uncertainties inherent to experimental differential scanning calorimetric data are evaluated. A new procedure is developed to perform the kinetic analysis of continuous heating calorimetric data when the heat capacity of the sample changes during the crystallization. The accuracy of isothermal calorimetric data is analyzed in terms of the peak-to-peak noise of the calorimetric signal and base line drift typical of differential scanning calorimetry equipment. Their influence in the evaluation of the kinetic parameters is discussed. An empirical construction of the time-temperature and temperature heating rate transformation diagrams, grounded on the kinetic parameters, is presented. The method is applied to the kinetic study of the primary crystallization of Te in an amorphous alloy of nominal composition Ga20Te80, obtained by rapid solidification.
Resumo:
In this work we develop the canonical formalism for constrained systems with a finite number of degrees of freedom by making use of the PoincarCartan integral invariant method. A set of variables suitable for the reduction to the physical ones can be obtained by means of a canonical transformation. From the invariance of the PoincarCartan integral under canonical transformations we get the form of the equations of motion for the physical variables of the system.
Resumo:
Bacterial translocation occurs in ascitic cirrhotic rats, but its association with ascites infection is unknown. The aim of this study was to assess the relation between bacterial translocation and ascites infection in cirrhotic rats. Male Sprague-Dawley rats were induced to cirrhosis with intragastric CCl4. Ascitic fluid, portal and peripheral blood, mesenteric lymph nodes, liver and spleen samples were cultured before death in those cirrhotic rats with less (group A) or more (group B) than 250 polymorphonuclear neutrophils/mm3 in ascitic fluid, as well as in healthy control rats. Histological examination of jejunum, ileum, and caecum was also performed. Bacterial translocation occurred in 45% of ascitic rats (without differences between groups A and B), but in 0% controls (p = 0.01). Bacterial translocation was associated with positive ascitic fluid culture in 60% of the cases. In all of them the same bacterial species was isolated in both mesenteric lymph node and ascitic fluid. Submucosal caecal oedema (100%), ileal lymphangiectasia (41%), and caecal inflammatory infiltrate (41%) occurred in ascitic rats, the last being associated with ascitic fluid positive culture (p = 0.04). These results suggests that bacterial translocation occurs frequently in ascitic cirrhotic rats, and may play a permissive, but not unique, part in a number of ascites infections. Whether histological changes seen in cirrhotic ascitic rats favour bacterial translocation remains to be elucidated.
Resumo:
The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin α-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin α-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly-). Generation of Hly- clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly- clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly- derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly- clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.