35 resultados para Temporal control of movement
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
What allows an armed group in a civil war to prevent desertion? This paper addresses this question with a focus on control in the rearguard. Most past studies focus on motivations for desertion. They explain desertion in terms of where soldiers stand in relation to the macro themes of the war, or in terms of an inability to provide positive incentives to overcome the collective action problem. However, since individuals decide whether and how to participate in civil wars for multiple reasons, responding to a variety of local conditions in an environment of threat and violence, a focus only on macro-level motivations is incomplete. The opportunities side of the ledger deserves more attention. I therefore turn my attention to how control by an armed group eliminates soldiers’ opportunities to desert. In particular, I consider the control that an armed group maintains over soldiers’ hometowns, treating geographic terrain as an important exogenous indicator of the ease of control. Rough terrain at home affords soldiers and their families and friends advantages in ease of hiding, the difficulty of using force, and local knowledge. Based on an original dataset of soldiers from Santander Province in the Spanish Civil War, gathered from archival sources, I find statistical evidence that the rougher the terrain in a soldier’s home municipality, the more likely he is to desert. I find complementary qualitative evidence indicating that soldiers from rough-terrain communities took active advantage of their greater opportunities for evasion. This finding has important implications for the way observers interpret different soldiers’ decisions to desert or remain fighting, for the prospect that structural factors may shape the cohesion of armed groups, and for the possibility that local knowledge may be a double-edged sword, making soldiers simultaneously good at fighting and good at deserting.
Resumo:
The control of optical fields on the nanometre scale is becoming an increasingly important tool in many fields, ranging from channelling light delivery in photovoltaics and light emitting diodes to increasing the sensitivity of chemical sensors to single molecule levels. The ability to design and manipulate light fields with specific frequency and space characteristics is explored in this project. We present an alternative realisation of Extraordinary Optical Transmission (EOT) that requires only a single aperture and a coupled waveguide. We show how this waveguide-resonant EOT improves the transmissivity of single apertures. An important technique in imaging is Near-Field Scanning Optical Microscopy (NSOM); we show how waveguide-resonant EOT and the novel probe design assist in improving the efficiency of NSOM probes by two orders of magnitude, and allow the imaging of single molecules with an optical resolution of as good as 50 nm. We show how optical antennas are fabricated into the apex of sharp tips and can be used in a near-field configuration.
Identification and Semiactive Control of Smart Structures Equipped with Magnetorheological Actuators
Resumo:
This paper deals with the problem of identification and semiactive control of smart structures subject to unknown external disturbances such as earthquake, wind, etc. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological actuators being installed in WUSCEEL. The experimental results obtained have verified the effectiveness of the proposed control algorithms
Resumo:
A decentralized model reference controller is designed to reduce the magnitude of the transversal vibration of a flexible cable-stayed beam structure induced by a seismic excitation. The controller design is made based on the principle of sliding mode such that a priori knowledge
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model
Resumo:
En aquest article es resumeixen els resultats publicats en un informe de l' ISS (Istituto Superiore di Sanità) del desembre de 2006, sobre un model matemàtic desenvolupat per un grup de treball que inclou a investigadors de les Universitats de Trento, Pisa i Roma, i els Instituts Nacionals de Salut (Istituto Superiore di Sanità, ISS), per avaluar i mesurar l'impacte de la transmissió i el control de la pandèmia de grip
Resumo:
The objective the present research is try to find some control design strategies, which must be effective and closed to the real operation conditions. As a novel contribution to structural control strategies, the theories of Interval Modal Arithmetic, Backstepping Control and QFT (Qualitative Feedback Theory) will be studied. The steps to follow are to develop first new controllers based on the above theories and then to implement the proposed control strategies to different kind of structures. The report is organized as follows. The Chapter 2 presents the state-of-the-art on structural control systems. The chapter 3 presents the most important open problems found in field of structural control. The exploratory work made by the author, research proposal and working plan are given in the Chapter 4
Resumo:
We performed a comprehensive study to assess the fit for purpose of four chromatographic conditions for the determination of six groups of marine lipophilic toxins (okadaic acid and dinophysistoxins, pectenotoxins, azaspiracids, yessotoxins, gymnodimine and spirolides) by LC-MS/MS to select the most suitable conditions as stated by the European Union Reference Laboratory for Marine Biotoxins (EURLMB). For every case, the elution gradient has been optimized to achieve a total run-time cycle of 12 min. We performed a single-laboratory validation for the analysis of three relevant matrices for the seafood aquaculture industry (mussels, pacific oysters and clams), and for sea urchins for which no data about lipophilic toxins have been reported before. Moreover, we have compared the method performance under alkaline conditions using two quantification strategies: the external standard calibration (EXS) and the matrix-matched standard calibration (MMS). Alkaline conditions were the only scenario that allowed detection windows with polarity switching in a 3200 QTrap mass spectrometer, thus the analysis of all toxins can be accomplished in a single run, increasing sample throughput. The limits of quantification under alkaline conditions met the validation requirements established by the EURLMB for all toxins and matrices, while the remaining conditions failed in some cases. The accuracy of the method and the matrix effects where generally dependent on the mobile phases and the seafood species. The MMS had a moderate positive impact on method accuracy for crude extracts, but it showed poor trueness for seafood species other than mussels when analyzing hydrolyzed extracts. Alkaline conditions with EXS and recovery correction for OA were selected as the most proper conditions in the context of our laboratory. This comparative study can help other laboratories to choose the best conditions for the implementation of LC-MS/MS according to their own necessities.
Resumo:
Removal of introns during pre-mRNA splicing is a critical process in gene expression, and understanding its control at both single-gene and genomic levels is one of the great challenges in Biology. Splicing takes place in a dynamic, large ribonucleoprotein complex known as the spliceosome. Combining Genetics and Biochemistry, Saccharomyces cerevisiae provides insights into its mechanisms, including its regulation by RNA-protein interactions. Recent genome-wide analyses indicate that regulated splicing is broad and biologically relevant even in organisms with a relatively simple intronic structure, such as yeast. Furthermore, the possibility of coordination in splicing regulation at genomic level is becoming clear in this model organism. This should provide a valuable system to approach the complex problem of the role of regulated splicing in genomic expression.
Resumo:
The achievable region approach seeks solutions to stochastic optimisation problems by: (i) characterising the space of all possible performances(the achievable region) of the system of interest, and (ii) optimisingthe overall system-wide performance objective over this space. This isradically different from conventional formulations based on dynamicprogramming. The approach is explained with reference to a simpletwo-class queueing system. Powerful new methodologies due to the authorsand co-workers are deployed to analyse a general multiclass queueingsystem with parallel servers and then to develop an approach to optimalload distribution across a network of interconnected stations. Finally,the approach is used for the first time to analyse a class of intensitycontrol problems.
Resumo:
The natural toxicity of cnidarians, bryozoans and tunicates in two caves was assessed using the Microtox® technique in spring and autumn. One cave was located in the Cabrera Archipelago (Balearic Islands) and the other in the Medes Islands (Catalan littoral). The organisms analysed were good representatives of the coverage of each Phylum in the communities; however, these Phyla are less abundant than sponges which are the dominant group in these caves. Seventy-one percent of the species of cnidarians and bryozoans analysed were toxic in one of the caves, communities or seasons, which indicates the relevance of bioactive species in these groups. The tunicate Lissoclinum perforatum was the most toxic species. Although all three Phyla had some highly toxic species, a common pattern that related the caves, communities and seasons was not found. Seasonal variation of toxicity in cnidarians and bryozoans was higher in the Cabrera than in the Medes cave. Moreover, variation in toxicity either between communities or between seasons was a common trait for most cnidarians and bryozoans, whereas tunicates remained toxic throughout communities and seasons.
Resumo:
The magnetic exchange between epitaxial thin films of the multiferroic (antiferromagnetic and ferroelectric) hexagonal YMnO3 oxide and a soft ferromagnetic (FM) layer is used to couple the magnetic response of the FM layer to the magnetic state of the antiferromagnetic one. We will show that biasing the ferroelectric YMnO3 layer by an electric field allows control of the magnetic exchange bias and subsequently the magnetotransport properties of the FM layer. This finding may contribute to paving the way towards a new generation of electric-field controlled spintronic devices.
Resumo:
We present a feedback control scheme to stabilize unstable cellular patterns during the directional solidification of a binary alloy. The scheme is based on local heating of cell tips which protrude ahead of the mean position of all tips in the array. The feasibility of this scheme is demonstrated using phase-field simulations and, experimentally, using a real-time image processing algorithm, to track cell tips, coupled with a movable laser spot array device to heat the tips locally. We demonstrate, both numerically and experimentally, that spacings well below the threshold for a period-doubling instability can be stabilized. As predicted by the numerical calculations, cellular arrays become stable with uniform spacing through the feedback control which is maintained with minimal heating.