22 resultados para TISSUE-SPECIFIC STEM CELLS
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The generation of induced pluripotent stem (iPS) cells has enabled the derivation of patient-specific pluripotent cells andprovided valuable experimental platforms to model human disease. Patient-specific iPS cells are also thought to hold greattherapeutic potential, although direct evidence for this is still lacking. Here we show that, on correction of the genetic defect,somatic cells from Fanconi anaemia patients can be reprogrammed to pluripotency to generate patient-specific iPS cells. These cell lines appear indistinguishable from human embryonic stem cells and iPS cells from healthy individuals. Most importantly, we show that corrected Fanconi-anaemia-specific iPS cells can give rise to haematopoietic progenitors of the myeloid and erythroid lineages that are phenotypically normal, that is, disease-free. These data offer proof-of-concept that iPS cell technology can be used for the generation of disease-corrected, patient-specific cells with potential value for cell therapy applications.
Resumo:
Induced pluripotent stem cells (iPSC ) provide an invaluable resource for regenerative medicine as they allow the generationof patient-specific progenitors with potential value for cell therapy. However, in many instances, an off-the-shelf approach isdesirable, such as for cell therapy of acute conditions or when the patient’s somatic cells are altered as a consequence of a chronicdisease or aging. Cord blood (CB) stem cells appear ideally suited for this purpose as they are young cells expected to carryminimal somatic mutations and possess the immunological immaturity of newborn cells; additionally, several hundred thousandimmunotyped CB units are readily available through a worldwide network of CB banks. Here we present a detailed protocol for thederivation of CB stem cells and how they can be reprogrammed to pluripotency by retroviral transduction with only two factors(OCT 4 and SO X2) in 2 weeks and without the need for additional chemical compounds.
Resumo:
Background In recent years, planaria have emerged as an important model system for research into stem cells and regeneration. Attention is focused on their unique stem cells, the neoblasts, which can differentiate into any cell type present in the adult organism. Sequencing of the Schmidtea mediterranea genome and some expressed sequence tag projects have generated extensive data on the genetic profile of these cells. However, little information is available on their protein dynamics. Results We developed a proteomic strategy to identify neoblast-specific proteins. Here we describe the method and discuss the results in comparison to the genomic high-throughput analyses carried out in planaria and to proteomic studies using other stem cell systems. We also show functional data for some of the candidate genes selected in our proteomic approach. Conclusions We have developed an accurate and reliable mass-spectra-based proteomics approach to complement previous genomic studies and to further achieve a more accurate understanding and description of the molecular and cellular processes related to the neoblasts.
Resumo:
The research on T cell immunosuppression therapies has attracted most of the attention in clinical transplantation. However, B cells and humoral immune responses are increasingly acknowledged as crucial mediators of chronic allograft rejection. Indeed, humoral immune responses can lead to renal allograft rejection even in patients whose cell-mediated immune responses are well controlled. On the other hand, newly studied B cell subsets with regulatory effects have been linked to tolerance achievement in transplantation. Better understanding of the regulatory and effector B cell responses may therefore lead to new therapeutic approaches. Mesenchymal stem cells (MSC) are arising as a potent therapeutic tool in transplantation due to their regenerative and immunomodulatory properties.The research on MSCs has mainly focused on their effects onT cells and although data regarding the modulatory effects of MSCs on alloantigen-specific humoral response in humans is scarce, it has been demonstrated that MSCs significantly affect B cell functioning. In the present review we will analyze and discuss the results in this field.
Resumo:
Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.
Resumo:
Uncoupling protein-3 (UCP3) is a member of the mitochondrial carrier family expressed preferentially in skeletal muscle and heart. It appears to be involved in metabolic handling of fatty acids in a way that minimizes excessive production of reactive oxygen species. Fatty acids are powerful regulators of UCP3 gene transcription. We have found that the role of peroxisome proliferator-activated receptor-α (PPARα) on the control of UCP3 gene expression depends on the tissue and developmental stage. In adults, UCP3 mRNA expression is unaltered in skeletal muscle from PPARα-null mice both in basal conditions and under the stimulus of starvation. In contrast, UCP3 mRNA is down-regulated in adult heart both in fed and fasted PPARα-null mice. This occurs despite the increased levels of free fatty acids caused by fasting in PPARα-null mice. In neonates, PPARα-null mice show impaired UCP3 mRNA expression in skeletal muscle in response to milk intake, and this is not a result of reduced free fatty acid levels. The murine UCP3 promoter is activated by fatty acids through either PPARα or PPARδ but not by PPARγ or retinoid X receptor alone. PPARδ-dependent activation could be a potential compensatory mechanism to ensure appropriate expression of UCP3 gene in adult skeletal muscle in the absence of PPARα. However, among transcripts from other PPARα and PPARδ target genes, only those acutely induced by milk intake in wild-type neonates were altered in muscle or heart from PPARα-null neonates. Thus, PPARα-dependent regulation is required for appropriate gene regulation of UCP3 as part of the subset of fatty-acid-responsive genes in neonatal muscle and heart.
Resumo:
Estudi realitzat a partir d’una estada a la the Salk Institute, Estats Units, entre 2010 i 2012. L'estabilitat del genoma és essencial per a la supervivència de les cèl • lules mare, però, l'estabilitat del proteoma pot tenir un paper igualment important en la identitat de cèl • lules mare i la seva funció. La nostra hipòtesi és que les cèl • lules mare tenen la capacitat de proteostasis augmentada en comparació amb els seus homòlegs diferenciats i ens varem preguntar si l'activitat del proteasoma és diferent a les cèl • lules mare embrionàries humanes (hESCs). En particular, els nostres resultats mostren que les poblacions de cèl• lules mare presenten una activitat del proteasoma que es correlaciona amb majors nivells de la subunitat 19S del proteasoma PSMD11/RPN-6 i un corresponent augment del ensamblatge del 26S/30S proteasoma. L'expressió ectòpica de PSMD11 és suficient per augmentar l'activitat del proteasoma. Sorprenentment, varem trobar que la llarga vida del GLP-1 C. elegans mutant té també un augment dramàtic en l'activitat del proteasoma associat a nivells augmentats en l'expressió de RPN-6. El factor de transcripció DAF-16 és essencial per l'augment de la longevitat de GLP-1 i els cucs mutants que trobem DAF-16 necessari per a l'augment d'expressió de RPN-6 i, per tant, per l'activació de l'activitat del proteasoma en GLP-1 mutant animals. Una possibilitat interessant és que els gens que regulen la vida i la resistència a l'estrès en C. elegans poden també regular la funció hESCs de mamífer, cèl • lules que son considerades immortals. Aquests resultats ens van portar a la conclusió de que FOXO4, un factor de transcripció sensible a la insulina/IGF-1, regula l'activitat del proteasoma en hESCs, el que suggereix un paper per FOXO4 en la funció d’aquestes cèl • lules. En efecte, FOXO4 es necessari per a la diferenciació en llinatges neuronals de les hESCs. Els nostres resultats estableixen una nova regulació de laproteostasis en hESCs que uneix la longevitat i la resistència a l'estrès en invertebrats amb la funció i identitat de les hESCs.
Resumo:
Induced pluripotent stem (iPS) cells have generated keen interestdue to their potential use in regenerative medicine. They havebeen obtained from various cell types of both mice and humans byexogenous delivery of different combinations of Oct4, Sox2, Klf4,c-Myc, Nanog, and Lin28. The delivery of these transcription factorshas mostly entailed the use of integrating viral vectors (retrovirusesor lentiviruses), carrying the risk of both insertional mutagenesisand oncogenesis due to misexpression of these exogenousfactors. Therefore, obtaining iPS cells that do not carry integratedtransgene sequences is an important prerequisite for their eventualtherapeutic use. Here we report the generation of iPS cell linesfrom mouse embryonic fibroblasts with no evidence of integrationof the reprogramming vector in their genome, achieved by nucleofectionof a polycistronic construct coexpressing Oct4, Sox2, Klf4,and c-Myc
Resumo:
The availability of induced pluripotent stem cells (iPSCs)has created extraordinary opportunities for modeling andperhaps treating human disease. However, all reprogrammingprotocols used to date involve the use of products of animal origin. Here, we set out to develop a protocol to generate and maintain human iPSC that would be entirelydevoid of xenobiotics. We first developed a xeno-free cellculture media that supported the long-term propagation of human embryonic stem cells (hESCs) to a similar extent as conventional media containing animal origin products or commercially available xeno-free medium. We also derivedprimary cultures of human dermal fibroblasts under strictxeno-free conditions (XF-HFF), and we show that they can be used as both the cell source for iPSC generation as well as autologous feeder cells to support their growth. We also replaced other reagents of animal origin trypsin, gelatin, matrigel) with their recombinant equivalents. Finally, we used vesicular stomatitis virus G-pseudotyped retroviral particles expressing a polycistronic construct encoding Oct4, Sox2, Klf4, and GFP to reprogram XF-HFF cells under xeno-free conditions. A total of 10 xeno-free humaniPSC lines were generated, which could be continuously passaged in xeno-free conditions and aintained characteristics indistinguishable from hESCs, including colonymorphology and growth behavior, expression of pluripotency-associated markers, and pluripotent differentiationability in vitro and in teratoma assays. Overall, the resultspresented here demonstrate that human iPSCs can be generatedand maintained under strict xeno-free conditions and provide a path to good manufacturing practice (GMP) applicability that should facilitate the clinical translation of iPSC-based therapies.
Resumo:
We report here the legislative issues related toembryo research and human embryonic stem cell (hESC)research in Spain and the derivation of nine hESC lines atthe Center of Regenerative Medicine in Barcelona. You canfind the information for obtaining our lines for researchpurposes at blc@cmrb.eu.
Resumo:
Background: The ubiquitin-dependent protein degradation pathway is essential for the proteolysis of intracellular proteins and peptides. Deubiquitinating enzymes constitute a complex protein family involved in a multitude of cellular processes. The ubiquitin-specific proteases (UBP) are a group of enzymes whose predicted function is to reverse the ubiquitinating reaction by removing ubiquitin from a large variety of substrates. We have lately reported the characterization of human USP25, a specific-ubiquitin protease gene at 21q11.2, with a specific pattern of expression in murine fetal brains and adult testis. Results: Database homology searches at the DNA and protein levels and cDNA library screenings led to the identification of a new UBP member in the human genome, named USP28, at 11q23. This novel gene showed preferential expression in heart and muscle. Moreover, cDNA, expressed sequence tag and RT-PCR analyses provided evidence for alternatively spliced products and tissue-specific isoforms. Concerning function, USP25 overexpression in Down syndrome fetal brains was shown by real-time PCR. Conclusions: On the basis of the genomic and protein sequence as well as the functional data, USP28 and USP25 establish a new subfamily of deubiquitinating enzymes. Both genes have alternatively spliced exons that could generate protein isoforms with distinct tissue-specific activity. The overexpression of USP25 in Down syndrome fetal brains supports the gene-dosage effects suggested for other UBP members related to aneuploidy syndromes.
Resumo:
Background: The arrangement of regulatory motifs in gene promoters, or promoterarchitecture, is the result of mutation and selection processes that have operated over manymillions of years. In mammals, tissue-specific transcriptional regulation is related to the presence ofspecific protein-interacting DNA motifs in gene promoters. However, little is known about therelative location and spacing of these motifs. To fill this gap, we have performed a systematic searchfor motifs that show significant bias at specific promoter locations in a large collection ofhousekeeping and tissue-specific genes.Results: We observe that promoters driving housekeeping gene expression are enriched inparticular motifs with strong positional bias, such as YY1, which are of little relevance in promotersdriving tissue-specific expression. We also identify a large number of motifs that show positionalbias in genes expressed in a highly tissue-specific manner. They include well-known tissue-specificmotifs, such as HNF1 and HNF4 motifs in liver, kidney and small intestine, or RFX motifs in testis,as well as many potentially novel regulatory motifs. Based on this analysis, we provide predictionsfor 559 tissue-specific motifs in mouse gene promoters.Conclusion: The study shows that motif positional bias is an important feature of mammalianproximal promoters and that it affects both general and tissue-specific motifs. Motif positionalconstraints define very distinct promoter architectures depending on breadth of expression andtype of tissue.
Resumo:
The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells) is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.
Resumo:
Background: The aim was to test the hypothesis that the blood serum of rats subjected to recurrent airway obstructions mimicking obstructive sleep apnea (OSA) induces early activation of bone marrow-derived mesenchymal stem cells (MSC) and enhancement of endothelial wound healing. Methods: We studied 30 control rats and 30 rats subjected to recurrent obstructive apneas (60 per hour, lasting 15 s each, for 5 h). The migration induced in MSC by apneic serum was measured by transwell assays. MSC-endothelial adhesion induced by apneic serum was assessed by incubating fluorescent-labelled MSC on monolayers of cultured endothelial cells from rat aorta. A wound healing assay was used to investigate the effect of apneic serum on endothelial repair. Results: Apneic serum showed significant increase in chemotaxis in MSC when compared with control serum: the normalized chemotaxis indices were 2.20 +- 0.58 (m +- SE) and 1.00 +- 0.26, respectively (p < 0.05). MSC adhesion to endothelial cells was greater (1.75 +- 0.14 -fold; p < 0.01) in apneic serum than in control serum. When compared with control serum, apneic serum significantly increased endothelial wound healing (2.01 +- 0.24 -fold; p < 0.05). Conclusions: The early increases induced by recurrent obstructive apneas in MSC migration, adhesion and endothelial repair suggest that these mechanisms play a role in the physiological response to the challenges associated to OSA.
Resumo:
A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. In native heart, pacing cells generate electrical stimuli that spread throughout the heartcausing cell membrane depolarization and activation of contractile apparatus. We ought to examine whether electricalstimulation of adipose tissue-derived progenitor cells (ATDPCs) exerts phenotypic and genetic changes that enhance theircardiomyogenic potential.