51 resultados para Synthetic metallaborane chemistry
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
A synthetic route to enantiopure cis-2,4-disubstituted and 2,4-bridged piperidines is reported, the key step being a stereoselective conjugate addition of an organocuprate to a phenylglycinol-derived unsaturated lactam bearing a substituent at the 8a-position.
Resumo:
Lipases have received great attention as industrial biocatalysts in areas like oils and fats processing, detergents, baking, cheese making, surface cleaning, or fine chemistry . They can catalyse reactions of insoluble substrates at the lipid-water interface, preserving their catalytic activity in organic solvents. This makes of lipases powerful tools for catalysing not only hydrolysis, but also various reverse reactions such as esterification, transesterification, aminolysis, or thiotransesterifications in anhydrous organic solvents. Moreover, lipases catalyse reactions with high specificity, regio and enantioselectivity, becoming the most used enzymes in synthetic organic chemistry. Therefore, they display important advantages over classical catalysts, as they can catalyse reactions with reduced side products, lowered waste treatment costs, and under mild temperature and pressure conditions. Accordingly, the use of lipases holds a great promise for green and economical process chemistry.
Resumo:
Lipases have received great attention as industrial biocatalysts in areas like oils and fats processing, detergents, baking, cheese making, surface cleaning, or fine chemistry . They can catalyse reactions of insoluble substrates at the lipid-water interface, preserving their catalytic activity in organic solvents. This makes of lipases powerful tools for catalysing not only hydrolysis, but also various reverse reactions such as esterification, transesterification, aminolysis, or thiotransesterifications in anhydrous organic solvents. Moreover, lipases catalyse reactions with high specificity, regio and enantioselectivity, becoming the most used enzymes in synthetic organic chemistry. Therefore, they display important advantages over classical catalysts, as they can catalyse reactions with reduced side products, lowered waste treatment costs, and under mild temperature and pressure conditions. Accordingly, the use of lipases holds a great promise for green and economical process chemistry.
Resumo:
The complexing capacity of synthetic (0.011 M tartrate in 13.5% ethanol) and real wine (Raimat Abadia) in titrations with added total Zn concentrations up to 0.03 M has been determined following the free Zn concentrations with AGNES (absence of gradients and Nernstian equilibrium stripping) technique. A correction to find the preconcentration factor or gain (Y1) really applied at each one of the ionic strengths reached due to Zn additions along the titration has been applied. The standard implementation of AGNES to real wine led to the observation of two anomalous behaviors: (a) an increasingly negative current in the deposition stage (labeled as “HER” effect) and (b) a minimum in the currents of the stripping stage plot (labeled as the “dip” effect). A practical strategy to apply AGNES avoiding the dip effect has been developed to quantify properly free Zn concentrations. The van den Berg–Ružic–Lee linearization method (assuming the existence of just 1:1 complexes) has been adapted to consider the dilution effect and the ionic strength changes. Aggregated stability constants and total ligand concentrations have been calculated from synthetic and wine titration data. The found complexing capacity in the studied wine (cT,L = 0.0179 ± 0.0007 M) indicates the contribution of ligands other than tartrate (which is confirmed to be the main one).
Resumo:
The esterification of fragment C1-C8 (2) with fragment C16-C23 (3) to give iodo derivative 4, followed by a Pd-catalysed coupling with a C9-C15 fragment (7 or 8), may provide a common precursor of most palmerolides. Ligands and reaction conditions were exhaustively examined to perform the C15-C16 bond formation via Negishi reaction. With simple models, pre-activated Pd-Xantphos and Pd-DPEphos complexes were the most efficient catalysts at RT. Zincation of the C9-C15 fragment (8) and cross coupling with 4 required 3 equiv of t-BuLi, 10 mol % of Pd-Xantphos and 60 °C.
Resumo:
Es discuteixen breument algunes consideracions sobre l'aplicació de la Teoria delsConjunts difusos a la Química quàntica. Es demostra aqui que molts conceptes químics associats a la teoria són adequats per ésser connectats amb l'estructura dels Conjunts difusos. També s'explica com algunes descripcions teoriques dels observables quàntics espotencien tractant-les amb les eines associades als esmentats Conjunts difusos. La funciódensitat es pren com a exemple de l'ús de distribucions de possibilitat al mateix temps queles distribucions de probabilitat quàntiques
Resumo:
The use of perturbation and power transformation operations permits the investigation of linear processes in the simplex as in a vectorial space. When the investigated geochemical processes can be constrained by the use of well-known starting point, the eigenvectors of the covariance matrix of a non-centred principalcomponent analysis allow to model compositional changes compared with a reference point.The results obtained for the chemistry of water collected in River Arno (central-northern Italy) have open new perspectives for considering relative changes of the analysed variables and to hypothesise the relative effect of different acting physical-chemical processes, thus posing the basis for a quantitative modelling
Resumo:
During the last decade the interest on space-borne Synthetic Aperture Radars (SAR) for remote sensing applications has grown as testified by the number of recent and forthcoming missions as TerraSAR-X, RADARSAT-2, COSMO-kyMed, TanDEM-X and the Spanish SEOSAR/PAZ. In this sense, this thesis proposes to study and analyze the performance of the state-of-the-Art space-borne SAR systems, with modes able to provide Moving Target Indication capabilities (MTI), i.e. moving object detection and estimation. The research will focus on the MTI processing techniques as well as the architecture and/ or configuration of the SAR instrument, setting the limitations of the current systems with MTI capabilities, and proposing efficient solutions for the future missions. Two European projects, to which the Universitat Politècnica de Catalunya provides support, are an excellent framework for the research activities suggested in this thesis. NEWA project proposes a potential European space-borne radar system with MTI capabilities in order to fulfill the upcoming European security policies. This thesis will critically review the state-of-the-Art MTI processing techniques as well as the readiness and maturity level of the developed capabilities. For each one of the techniques a performance analysis will be carried out based on the available technologies, deriving a roadmap and identifying the different technological gaps. In line with this study a simulator tool will be developed in order to validate and evaluate different MTI techniques in the basis of a flexible space-borne radar configuration. The calibration of a SAR system is mandatory for the accurate formation of the SAR images and turns to be critical in the advanced operation modes as MTI. In this sense, the SEOSAR/PAZ project proposes the study and estimation of the radiometric budget. This thesis will also focus on an exhaustive analysis of the radiometric budget considering the current calibration concepts and their possible limitations. In the framework of this project a key point will be the study of the Dual Receive Antenna (DRA) mode, which provides MTI capabilities to the mission. An additional aspect under study is the applicability of the Digital Beamforming on multichannel and/or multistatic radar platforms, which conform potential solutions for the NEWA project with the aim to fully exploit its capability jointly with MTI techniques.
Resumo:
The identification of compositional changes in fumarolic gases of active and quiescent volcanoes is one of the mostimportant targets in monitoring programs. From a general point of view, many systematic (often cyclic) and randomprocesses control the chemistry of gas discharges, making difficult to produce a convincing mathematical-statisticalmodelling.Changes in the chemical composition of volcanic gases sampled at Vulcano Island (Aeolian Arc, Sicily, Italy) fromeight different fumaroles located in the northern sector of the summit crater (La Fossa) have been analysed byconsidering their dependence from time in the period 2000-2007. Each intermediate chemical composition has beenconsidered as potentially derived from the contribution of the two temporal extremes represented by the 2000 and 2007samples, respectively, by using inverse modelling methodologies for compositional data. Data pertaining to fumarolesF5 and F27, located on the rim and in the inner part of La Fossa crater, respectively, have been used to achieve theproposed aim. The statistical approach has allowed us to highlight the presence of random and not random fluctuations,features useful to understand how the volcanic system works, opening new perspectives in sampling strategies and inthe evaluation of the natural risk related to a quiescent volcano
Resumo:
A comparative systematic study of the CrO2F2 compound has been performed using different conventional ab initio methodologies and density functional procedures. Two points have been analyzed: first, the accuracy of results yielded by each method under study, and second, the computational cost required to reach such results. Weighing up both aspects, density functional theory has been found to be more appropriate than the Hartree-Fock (HF) and the analyzed post-HF methods. Hence, the structural characterization and spectroscopic elucidation of the full CrO2X2 series (X=F,Cl,Br,I) has been done at this level of theory. Emphasis has been given to the unknown CrO2I2 species, and specially to the UV/visible spectra of all four compounds. Furthermore, a topological analysis in terms of charge density distributions has revealed why the valence shell electron pair repulsion model fails in predicting the molecular shape of such CrO2X2 complexes
Resumo:
Background: Two genes are called synthetic lethal (SL) if mutation of either alone is not lethal, but mutation of both leads to death or a significant decrease in organism's fitness. The detection of SL gene pairs constitutes a promising alternative for anti-cancer therapy. As cancer cells exhibit a large number of mutations, the identification of these mutated genes' SL partners may provide specific anti-cancer drug candidates, with minor perturbations to the healthy cells. Since existent SL data is mainly restricted to yeast screenings, the road towards human SL candidates is limited to inference methods. Results: In the present work, we use phylogenetic analysis and database manipulation (BioGRID for interactions, Ensembl and NCBI for homology, Gene Ontology for GO attributes) in order to reconstruct the phylogenetically-inferred SL gene network for human. In addition, available data on cancer mutated genes (COSMIC and Cancer Gene Census databases) as well as on existent approved drugs (DrugBank database) supports our selection of cancer-therapy candidates.Conclusions: Our work provides a complementary alternative to the current methods for drug discovering and gene target identification in anti-cancer research. Novel SL screening analysis and the use of highly curated databases would contribute to improve the results of this methodology.
Resumo:
We study particle dispersion advected by a synthetic turbulent flow from a Lagrangian perspective and focus on the two-particle and cluster dispersion by the flow. It has been recently reported that Richardson¿s law for the two-particle dispersion can stem from different dispersion mechanisms, and can be dominated by either diffusive or ballistic events. The nature of the Richardson dispersion depends on the parameters of our flow and is discussed in terms of the values of a persistence parameter expressing the relative importance of the two above-mentioned mechanisms. We support this analysis by studying the distribution of interparticle distances, the relative velocity correlation functions, as well as the relative trajectories.
Resumo:
We present an analytical scheme, easily implemented numerically, to generate synthetic Gaussian turbulent flows by using a linear Langevin equation, where the noise term acts as a stochastic stirring force. The characteristic parameters of the velocity field are well introduced, in particular the kinematic viscosity and the spectrum of energy. As an application, the diffusion of a passive scalar is studied for two different energy spectra. Numerical results are compared favorably with analytical calculations.