119 resultados para Symmetry properties
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Exact formulas for the effective eigenvalue characterizing the initial decay of intensity correlation functions are given in terms of stationary moments of the intensity. Spontaneous emission noise and nonwhite pump noise are considered. Our results are discussed in connection with earlier calculations, simulations, and experimental results for single-mode dye lasers, two-mode inhomogeneously broadened lasers, and two-mode dye ring lasers. The effective eigenvalue is seen to depend sensitively on noise characteristics and symmetry properties of the system. In particular, the effective eigenvalue associated with cross correlations of two-mode lasers is seen to vanish in the absence of pump noise as a consequence of detailed balance. In the presence of pump noise, the vanishing of this eigenvalue requires equal pump parameters for the two modes and statistical independence of spontaneous emission noise acting on each mode.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Resumo:
We investigate the phase transition in a strongly disordered short-range three-spin interaction model characterized by the absence of time-reversal symmetry in the Hamiltonian. In the mean-field limit the model is well described by the Adam-Gibbs-DiMarzio scenario for the glass transition; however, in the short-range case this picture turns out to be modified. The model presents a finite temperature continuous phase transition characterized by a divergent spin-glass susceptibility and a negative specific-heat exponent. We expect the nature of the transition in this three-spin model to be the same as the transition in the Edwards-Anderson model in a magnetic field, with the advantage that the strong crossover effects present in the latter case are absent.
Resumo:
We describe a relation between the symmetry energy coefficients csym(ρ) of nuclear matter and asym(A) of finite nuclei that accommodates other correlations of nuclear properties with the low-density behavior of csym(ρ). Here, we take advantage of this relation to explore the prospects for constraining csym(ρ) of systematic measurements of neutron skin sizes across the mass table, using as example present data from antiprotonic atoms. The found constraints from neutron skins are in harmony with the recent determinations from reactions and giant resonances.
Resumo:
By modifying a domain first suggested by Ruth Goodman in 1935 and by exploiting the explicit solution by Fedorov of the Polyá-Chebotarev problem in the case of four symmetrically placed points, an improved upper bound for the univalent Bloch-Landau constant is obtained. The domain that leads to this improved bound takes the form of a disk from which some arcs are removed in such a way that the resulting simply connected domain is harmonically symmetric in each arc with respect to the origin. The existence of domains of this type is established, using techniques from conformal welding, and some general properties of harmonically symmetric arcs in this setting are established.
Resumo:
The symmetry energy coefficients, incompressibility, and single-particle and isovector potentials of clusterized dilute nuclear matter are calculated at different temperatures employing the S-matrix approach to the evaluation of the equation of state. Calculations have been extended to understand the aforesaid properties of homogeneous and clusterized supernova matter in the subnuclear density region. A comparison of the results in the S-matrix and mean-field approach reveals some subtle differences in the density and temperature region we explore.
Resumo:
We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.
Resumo:
The aim of this paper is to find normative foundations of Approval Voting. In order to show that Approval Voting is the only social choice function that satisfies anonymity, neutrality, strategy-proofness and strict monotonicity we rely on an intermediate result which relates strategy-proofness of a social choice function to the properties of Independence of Irrelevant Alternatives and monotonicity of the corresponding social welfare function. Afterwards we characterize Approval Voting by means of strict symmetry, neutrality and strict monotonicity and relate this result to May's Theorem. Finally, we show that it is possible to substitute the property of strict monotonicity by the one efficiency of in the second characterization.
Resumo:
The division problem consists of allocating an amount M of a perfectly divisible good among a group of n agents. Sprumont (1991) showed that if agents have single-peaked preferences over their shares, the uniform rule is the unique strategy-proof, efficient, and anonymous rule. Ching and Serizawa (1998) extended this result by showing that the set of single-plateaued preferences is the largest domain, for all possible values of M, admitting a rule (the extended uniform rule) satisfying strategy-proofness, efficiency and symmetry. We identify, for each M and n, a maximal domain of preferences under which the extended uniform rule also satisfies the properties of strategy-proofness, efficiency, continuity, and "tops-onlyness". These domains (called weakly single-plateaued) are strictly larger than the set of single-plateaued preferences. However, their intersection, when M varies from zero to infinity, coincides with the set of single-plateaued preferences.
Resumo:
Ever since the appearance of the ARCH model [Engle(1982a)], an impressive array of variance specifications belonging to the same class of models has emerged [i.e. Bollerslev's (1986) GARCH; Nelson's (1990) EGARCH]. This recent domain has achieved very successful developments. Nevertheless, several empirical studies seem to show that the performance of such models is not always appropriate [Boulier(1992)]. In this paper we propose a new specification: the Quadratic Moving Average Conditional heteroskedasticity model. Its statistical properties, such as the kurtosis and the symmetry, as well as two estimators (Method of Moments and Maximum Likelihood) are studied. Two statistical tests are presented, the first one tests for homoskedasticity and the second one, discriminates between ARCH and QMACH specification. A Monte Carlo study is presented in order to illustrate some of the theoretical results. An empirical study is undertaken for the DM-US exchange rate.
Resumo:
We explore which types of finiteness properties are possible for intersections of geometrically finite groups of isometries in negatively curved symmetric rank one spaces. Our main tool is a twist construction which takes as input a geometrically finite group containing a normal subgroup of infinite index with given finiteness properties and infinite Abelian quotient, and produces a pair of geometrically finite groups whose intersection is isomorphic to the normal subgroup.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
In this paper we study basic properties of the weighted Hardy space for the unit disc with the weight function satisfying Muckenhoupt's (Aq) condition, and study related approximation problems (expansion, moment and interpolation) with respect to two incomplete systems of holomorphic functions in this space.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
The influence of chemistry and soaking temperature (maximal temperature of the continuous annealing) on the final properties of non-oriented electrical steels has been studied. With this objective two different studies have been performed. First the Mn, Ni and Cr content of a low loss electrical steel composition has been modified. An intermediate content and a high content of each element has been added in order to study the influence of this components on the magnetic looses, grain size and texture. Secondly the influence of the soaking temperature on magnetic properties, grain size and oxidation in four grades of non-oriented electrical steels (Steel A, B, C and D) was studied.