59 resultados para Symmetric Mean
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.
Resumo:
We report on a series of experiments that examine bidding behavior in first-price sealed bid auctions with symmetric and asymmetric bidders. To study the extent of strategic behavior, we use an experimental design that elicits bidders' complete bid functions in each round (auction) of the experiment. In the aggregate, behavior is consistent with the basic equilibrium predictions for risk neutral or homogenous risk averse bidders (extent of bid shading, average seller's revenues and deviations from equilibrium). However, when we look at the extent of best reply behavior and the shape of bid functions, we find that individual behavior is not in line with the received equilibrium models, although it exhibits strategic sophistication.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We study planar central configurations of the five-body problem where three of the bodies are collinear, forming an Euler central configuration of the three-body problem, and the two other bodies together with the collinear configuration are in the same plane. The problem considered here assumes certain symmetries. From the three bodies in the collinear configuration, the two bodies at the extremities have equal masses and the third one is at the middle point between the two. The fourth and fifth bodies are placed in a symmetric way: either with respect to the line containing the three bodies, or with respect to the middle body in the collinear configuration, or with respect to the perpendicular bisector of the segment containing the three bodies. The possible stacked five-body central configurations satisfying these types of symmetries are: a rhombus with four masses at the vertices and a fifth mass in the center, and a trapezoid with four masses at the vertices and a fifth mass at the midpoint of one of the parallel sides.
Resumo:
We characterize the class of strategy-proof social choice functions on the domain of symmetric single-peaked preferences. This class is strictly larger than the set of generalized median voter schemes (the class of strategy-proof and tops-only social choice functions on the domain of single-peaked preferences characterized by Moulin (1980)) since, under the domain of symmetric single-peaked preferences, generalized median voter schemes can be disturbed by discontinuity points and remain strategy-proof on the smaller domain. Our result identifies the specific nature of these discontinuities which allow to design non-onto social choice functions to deal with feasibility constraints.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We describe a model structure for coloured operads with values in the category of symmetric spectra (with the positive model structure), in which fibrations and weak equivalences are defined at the level of the underlying collections. This allows us to treat R-module spectra (where R is a cofibrant ring spectrum) as algebras over a cofibrant spectrum-valued operad with R as its first term. Using this model structure, we give sufficient conditions for homotopical localizations in the category of symmetric spectra to preserve module structures.
Resumo:
This paper conducts an empirical analysis of the relationship between wage inequality, employment structure, and returns to education in urban areas of Mexico during the past two decades (1987-2008). Applying Melly’s (2005) quantile regression based decomposition, we find that changes in wage inequality have been driven mainly by variations in educational wage premia. Additionally, we find that changes in employment structure, including occupation and firm size, have played a vital role. This evidence seems to suggest that the changes in wage inequality in urban Mexico cannot be interpreted in terms of a skill-biased change, but rather they are the result of an increasing demand for skills during that period.
Resumo:
Kriging is an interpolation technique whose optimality criteria are based on normality assumptions either for observed or for transformed data. This is the case of normal, lognormal and multigaussian kriging.When kriging is applied to transformed scores, optimality of obtained estimators becomes a cumbersome concept: back-transformed optimal interpolations in transformed scores are not optimal in the original sample space, and vice-versa. This lack of compatible criteria of optimality induces a variety of problems in both point and block estimates. For instance, lognormal kriging, widely used to interpolate positivevariables, has no straightforward way to build consistent and optimal confidence intervals for estimates.These problems are ultimately linked to the assumed space structure of the data support: for instance, positive values, when modelled with lognormal distributions, are assumed to be embedded in the whole real space, with the usual real space structure and Lebesgue measure
Resumo:
There is almost not a case in exploration geology, where the studied data doesn’tincludes below detection limits and/or zero values, and since most of the geological dataresponds to lognormal distributions, these “zero data” represent a mathematicalchallenge for the interpretation.We need to start by recognizing that there are zero values in geology. For example theamount of quartz in a foyaite (nepheline syenite) is zero, since quartz cannot co-existswith nepheline. Another common essential zero is a North azimuth, however we canalways change that zero for the value of 360°. These are known as “Essential zeros”, butwhat can we do with “Rounded zeros” that are the result of below the detection limit ofthe equipment?Amalgamation, e.g. adding Na2O and K2O, as total alkalis is a solution, but sometimeswe need to differentiate between a sodic and a potassic alteration. Pre-classification intogroups requires a good knowledge of the distribution of the data and the geochemicalcharacteristics of the groups which is not always available. Considering the zero valuesequal to the limit of detection of the used equipment will generate spuriousdistributions, especially in ternary diagrams. Same situation will occur if we replace thezero values by a small amount using non-parametric or parametric techniques(imputation).The method that we are proposing takes into consideration the well known relationshipsbetween some elements. For example, in copper porphyry deposits, there is always agood direct correlation between the copper values and the molybdenum ones, but whilecopper will always be above the limit of detection, many of the molybdenum values willbe “rounded zeros”. So, we will take the lower quartile of the real molybdenum valuesand establish a regression equation with copper, and then we will estimate the“rounded” zero values of molybdenum by their corresponding copper values.The method could be applied to any type of data, provided we establish first theircorrelation dependency.One of the main advantages of this method is that we do not obtain a fixed value for the“rounded zeros”, but one that depends on the value of the other variable.Key words: compositional data analysis, treatment of zeros, essential zeros, roundedzeros, correlation dependency
Resumo:
Stone groundwood (SGW) is a fibrous matter commonly prepared in a high yield process, and mainly used for papermaking applications. In this work, the use of SGW fibers is explored as reinforcing element of polypropylene (PP) composites. Due to its chemical and superficial features, the use of coupling agents is needed for a good adhesion and stress transfer across the fiber-matrix interface. The intrinsic strength of the reinforcement is a key parameter to predict the mechanical properties of the composite and to perform an interface analysis. The main objective of the present work was the determination of the intrinsic tensile strength of stone groundwood fibers. Coupled and non-coupled PP composites from stone groundwood fibers were prepared. The influence of the surface morphology and the quality at interface on the final properties of the composite was analyzed and compared to that of fiberglass PP composites. The intrinsic tensile properties of stone groundwood fibers, as well as the fiber orientation factor and the interfacial shear strength of the current composites were determined
Resumo:
An overview is given on a study which showed that not only in chemical reactions but also in the favorable case of nontotally symmetric vibrations where the chemical and external potentials keep approximately constant, the generalized maximum hardness principle (GMHP) and generalized minimum polarizability principle (GMPP) may not be obeyed. A method that allows an accurate determination of the nontotally symmetric molecular distortions with more marked GMPP or anti-GMPP character through diagonalization of the polarizability Hessian matrix is introduced
Resumo:
We establish the validity of subsampling confidence intervals for themean of a dependent series with heavy-tailed marginal distributions.Using point process theory, we study both linear and nonlinear GARCH-liketime series models. We propose a data-dependent method for the optimalblock size selection and investigate its performance by means of asimulation study.
Resumo:
Structural equation models are widely used in economic, socialand behavioral studies to analyze linear interrelationships amongvariables, some of which may be unobservable or subject to measurementerror. Alternative estimation methods that exploit different distributionalassumptions are now available. The present paper deals with issues ofasymptotic statistical inferences, such as the evaluation of standarderrors of estimates and chi--square goodness--of--fit statistics,in the general context of mean and covariance structures. The emphasisis on drawing correct statistical inferences regardless of thedistribution of the data and the method of estimation employed. A(distribution--free) consistent estimate of $\Gamma$, the matrix ofasymptotic variances of the vector of sample second--order moments,will be used to compute robust standard errors and a robust chi--squaregoodness--of--fit squares. Simple modifications of the usual estimateof $\Gamma$ will also permit correct inferences in the case of multi--stage complex samples. We will also discuss the conditions under which,regardless of the distribution of the data, one can rely on the usual(non--robust) inferential statistics. Finally, a multivariate regressionmodel with errors--in--variables will be used to illustrate, by meansof simulated data, various theoretical aspects of the paper.
Spanning tests in return and stochastic discount factor mean-variance frontiers: A unifying approach
Resumo:
We propose new spanning tests that assess if the initial and additional assets share theeconomically meaningful cost and mean representing portfolios. We prove their asymptoticequivalence to existing tests under local alternatives. We also show that unlike two-step oriterated procedures, single-step methods such as continuously updated GMM yield numericallyidentical overidentifyng restrictions tests, so there is arguably a single spanning test.To prove these results, we extend optimal GMM inference to deal with singularities in thelong run second moment matrix of the influence functions. Finally, we test for spanningusing size and book-to-market sorted US stock portfolios.