36 resultados para Si-based polymer film

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a electroluminescence (EL) study of the Si-rich silicon oxide (SRSO) LEDs with and without Er3+ ions under different polarization schemes: direct current (DC) and pulsed voltage (PV). The power efficiency of the devices and their main optical limitations are presented. We show that under PV polarization scheme, the devices achieve one order of magnitude superior performance in comparison with DC. Time-resolved measurements have shown that this enhancement is met only for active layers in which annealing temperature is high enough (>1000 ◦C) for silicon nanocrystal (Si-nc) formation. Modeling of the system with rate equations has been done and excitation cross-sections for both Si-nc and Er3+ ions have been extracted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

he complex refractive index of SiO2 layers containing Si nanoclusters (Si-nc) has been measured by spectroscopic ellipsometry in the range from 1.5 to 5.0 eV. It has been correlated with the amount of Si excess accurately measured by x-ray photoelectron spectroscopy and the nanocluster size determined by energy-filtered transmission electron microscopy. The Si-nc embedded in SiO2 have been produced by a fourfold Si+ ion implantation, providing uniform Si excess aimed at a reliable ellipsometric modeling. The complex refractive index of the Si-nc phase has been calculated by the application of the Bruggeman effective-medium approximation to the composite media. The characteristic resonances of the refractive index and extinction coefficient of bulk Si vanish out in Si-nc. In agreement with theoretical simulations, a significant reduction of the refractive index of Si-nc is observed, in comparison with bulk and amorphous silicon. The knowledge of the optical properties of these composite layers is crucial for the realization of Si-based waveguides and light-emitting devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural saturation and stability, the energy gap, and the density of states of a series of small, silicon-based clusters have been studied by means of the PM3 and some ab initio (HF/6-31G* and 6-311++G**, CIS/6-31G* and MP2/6-31G*) calculations. It is shown that in order to maintain a stable nanometric and tetrahedral silicon crystallite and remove the gap states, the saturation atom or species such as H, F, Cl, OH, O, or N is necessary, and that both the cluster size and the surface species affect the energetic distribution of the density of states. This research suggests that the visible luminescence in the silicon-based nanostructured material essentially arises from the nanometric and crystalline silicon domains but is affected and protected by the surface species, and we have thus linked most of the proposed mechanisms of luminescence for the porous silicon, e.g., the quantum confinement effect due to the cluster size and the effect of Si-based surface complexes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a study on the development and the evaluation of a fully automated radio-frequency glow discharge system devoted to the deposition of amorphous thin film semiconductors and insulators. The following aspects were carefully addressed in the design of the reactor: (1) cross contamination by dopants and unstable gases, (2) capability of a fully automated operation, (3) precise control of the discharge parameters, particularly the substrate temperature, and (4) high chemical purity. The new reactor, named ARCAM, is a multiplasma-monochamber system consisting of three separated plasma chambers located inside the same isothermal vacuum vessel. Thus, the system benefits from the advantages of multichamber systems but keeps the simplicity and low cost of monochamber systems. The evaluation of the reactor performances showed that the oven-like structure combined with a differential dynamic pumping provides a high chemical purity in the deposition chamber. Moreover, the studies of the effects associated with the plasma recycling of material from the walls and of the thermal decomposition of diborane showed that the multiplasma-monochamber design is efficient for the production of abrupt interfaces in hydrogenated amorphous silicon (a-Si:H) based devices. Also, special attention was paid to the optimization of plasma conditions for the deposition of low density of states a-Si:H. Hence, we also present the results concerning the effects of the geometry, the substrate temperature, the radio frequency power and the silane pressure on the properties of the a-Si:H films. In particular, we found that a low density of states a-Si:H can be deposited at a wide range of substrate temperatures (100°C

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interaction models of atomic Al with Si4H9, Si4H7, and Si6H9 clusters have been studied to simulate Al chemisorption on the Si(111) surface in the atop, fourfold atop, and open sites. Calculations were carried out using nonempirical pseudopotentials in the framework of the ab initio Hartree-Fock procedure. Equilibrium bond distances, binding energies for adsorption, and vibrational frequencies of the adatoms are calculated. Several basis sets were used in order to show the importance of polarization effects, especially in the binding energies. Final results show the importance of considering adatom-induced relaxation effects to specify the order of energy stabilities for the three different sites, the fourfold atop site being the preferred one, in agreement with experimental findings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we report on the growth of thick films of magnetoresistive La2/3Sr1/3MnO3 by using spray and screen printing techniques on various substrates (Al2O3 and ZrO2). The growth conditions are explored in order to optimize the microstructure of the films. The films display a room-temperature magnetoresistance of 0.0012%/Oe in the 1 kOe field region. A magnetic sensor is described and tested.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, (011)-highly oriented Sr, Nb co-doped BiFeO3 (BFO) thin films were successfully grown on SrRuO3/Si substrates by rf-magnetron sputtering. The presence of parasite magnetic phases was ruled out based on the high resolution x-ray diffraction data. BFO films exhibited a columnar-like grain growth with rms surface roughness values of 5.3 nm and average grain sizes of 65-70 nm for samples with different thicknesses. Remanent polarization values (2Pr) of 54 lC cm 2 at room temperature were found for the BFO films with a ferroelectric behavior characteristic of an asymmetric device structure. Analysis of the leakage mechanisms for this structure in negative bias suggests Schottky injection and a dominant Poole-Frenkel trap-limited conduction at room temperature. Oxygen vacancies and Fe3þ/Fe2þ trap centers are consistent with the surface chemical bonding states analysis from x-ray photoelectron spectroscopy data. The (011)-BFO/ SrRuO3/Si film structure exhibits a strong magnetic interaction at the interface between the multiferroic film and the substrate layer where an enhanced ferromagnetic response at 5 K was observed. Zero-field cooled (ZFC) and field cooled (FC) magnetization curves of this film system revealed a possible spin glass behavior at spin freezing temperatures below 30 K depending on the BFO film thickness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The electrical and electroluminescence (EL) properties at room and high temperatures of oxide/ nitride/oxide (ONO)-based light emitting capacitors are studied. The ONO multidielectric layer is enriched with silicon by means of ion implantation. The exceeding silicon distribution follows a Gaussian profile with a maximum of 19%, centered close to the lower oxide/nitride interface. The electrical measurements performed at room and high temperatures allowed to unambiguously identify variable range hopping (VRH) as the dominant electrical conduction mechanism at low voltages, whereas at moderate and high voltages, a hybrid conduction formed by means of variable range hopping and space charge-limited current enhanced by Poole-Frenkel effect predominates. The EL spectra at different temperatures are also recorded, and the correlation between charge transport mechanisms and EL properties is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquest treball de recerca fa un estudi comparatiu del videojoc de terror amb el seu homòleg cinematogràfic. L’objectiu és arribar a saber si els dos mitjans de comunicació usen les mateixes tècniques per transmetre les seves històries i per crear suspens. Aquesta investigació és només una part d'un estudi més ampli amb el que es pretén tenir un coneixement més aprofundit de les emocions de la gent i les reaccions que els provoca un videojoc de terror en comparació amb la visualització de l'adaptació cinematogràfica del corresponent videojoc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate that thickness, optical constants, and details of the multilayer stack, together with the detection setting, strongly influence the photoluminescence spectra of Si nanocrystals embedded in SiO2. Due to multiple reflections of the visible light against the opaque silicon substrate, an interference pattern is built inside the oxide layer, which is responsible for the modifications in the measured spectra. This interference effect is complicated by the depth dependence of (i) the intensity of the excitation laser and (ii) the concentration of the emitting nanocrystals. These variations can give rise to apparent features in the recorded spectra, such as peak shifts, satellite shoulders, and even splittings, which can be mistaken as intrinsic material features. Thus, they can give rise to an erroneous attribution of optical bands or estimate of the average particle size, while they are only optical-geometrical artifacts. We have analyzed these effects as a function of material composition (Si excess fraction) and thickness, and also evaluated how the geometry of the detection setup affects the measurements. To correct the experimental photoluminescence spectra and extract the true spectral shape of the emission from Si nanocrystals, we have developed an algorithm based on a modulation function, which depends on both the multilayer sequence and the experimental configuration. This procedure can be easily extended to other heterogeneous systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correlation between the structural (average size and density) and optoelectronic properties [band gap and photoluminescence (PL)] of Si nanocrystals embedded in SiO2 is among the essential factors in understanding their emission mechanism. This correlation has been difficult to establish in the past due to the lack of reliable methods for measuring the size distribution of nanocrystals from electron microscopy, mainly because of the insufficient contrast between Si and SiO2. With this aim, we have recently developed a successful method for imaging Si nanocrystals in SiO2 matrices. This is done by using high-resolution electron microscopy in conjunction with conventional electron microscopy in dark field conditions. Then, by varying the time of annealing in a large time scale we have been able to track the nucleation, pure growth, and ripening stages of the nanocrystal population. The nucleation and pure growth stages are almost completed after a few minutes of annealing time at 1100°C in N2 and afterward the ensemble undergoes an asymptotic ripening process. In contrast, the PL intensity steadily increases and reaches saturation after 3-4 h of annealing at 1100°C. Forming gas postannealing considerably enhances the PL intensity but only for samples annealed previously in less time than that needed for PL saturation. The effects of forming gas are reversible and do not modify the spectral shape of the PL emission. The PL intensity shows at all times an inverse correlation with the amount of Pb paramagnetic centers at the Si-SiO2 nanocrystal-matrix interfaces, which have been measured by electron spin resonance. Consequently, the Pb centers or other centers associated with them are interfacial nonradiative channels for recombination and the emission yield largely depends on the interface passivation. We have correlated as well the average size of the nanocrystals with their optical band gap and PL emission energy. The band gap and emission energy shift to the blue as the nanocrystal size shrinks, in agreement with models based on quantum confinement. As a main result, we have found that the Stokes shift is independent of the average size of nanocrystals and has a constant value of 0.26±0.03 eV, which is almost twice the energy of the Si¿O vibration. This finding suggests that among the possible channels for radiative recombination, the dominant one for Si nanocrystals embedded in SiO2 is a fundamental transition spatially located at the Si¿SiO2 interface with the assistance of a local Si-O vibration.