8 resultados para Series Summation Method
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
An analytic method to evaluate nuclear contributions to electrical properties of polyatomic molecules is presented. Such contributions control changes induced by an electric field on equilibrium geometry (nuclear relaxation contribution) and vibrational motion (vibrational contribution) of a molecular system. Expressions to compute the nuclear contributions have been derived from a power series expansion of the potential energy. These contributions to the electrical properties are given in terms of energy derivatives with respect to normal coordinates, electric field intensity or both. Only one calculation of such derivatives at the field-free equilibrium geometry is required. To show the useful efficiency of the analytical evaluation of electrical properties (the so-called AEEP method), results for calculations on water and pyridine at the SCF/TZ2P and the MP2/TZ2P levels of theory are reported. The results obtained are compared with previous theoretical calculations and with experimental values
Resumo:
Condence intervals in econometric time series regressions suffer fromnotorious coverage problems. This is especially true when the dependencein the data is noticeable and sample sizes are small to moderate, as isoften the case in empirical studies. This paper suggests using thestudentized block bootstrap and discusses practical issues, such as thechoice of the block size. A particular data-dependent method is proposedto automate the method. As a side note, it is pointed out that symmetricconfidence intervals are preferred over equal-tailed ones, since theyexhibit improved coverage accuracy. The improvements in small sampleperformance are supported by a simulation study.
Resumo:
Este trabajo analiza si las series de Contabilidad Nacional Trimestral de España son excesivamente suaves y, por lo tanto, si son realmente informativas de la evolución de la economía española a corto plazo. Mediante la utilización de las técnicas de análisis espectral se observa que las series trimestrales españolas presentan una variabilidad mayor que las de otros países de la OCDE en el intervalo de frecuencias más bajas (asociadas al comportamiento de la serie a largo plazo ) y una variabilidad menor en el intervalo de frecuencias más altas (asociadas al ruido que contiene la serie). El motivo de este comportamiento diferencial de las series trimestrales españolas se encuentra en el método utilizado por el Instituto Nacional de Estadística por estimar la señal ciclo-tendencia de los indicadores utilizados como referencia, concretamente, el conocido como filtro de líneas aéreas modificado (LAM)
Resumo:
Este trabajo analiza si las series de Contabilidad Nacional Trimestral de España son excesivamente suaves y, por lo tanto, si son realmente informativas de la evolución de la economía española a corto plazo. Mediante la utilización de las técnicas de análisis espectral se observa que las series trimestrales españolas presentan una variabilidad mayor que las de otros países de la OCDE en el intervalo de frecuencias más bajas (asociadas al comportamiento de la serie a largo plazo ) y una variabilidad menor en el intervalo de frecuencias más altas (asociadas al ruido que contiene la serie). El motivo de este comportamiento diferencial de las series trimestrales españolas se encuentra en el método utilizado por el Instituto Nacional de Estadística por estimar la señal ciclo-tendencia de los indicadores utilizados como referencia, concretamente, el conocido como filtro de líneas aéreas modificado (LAM)
Resumo:
In the first part of the study, nine estimators of the first-order autoregressive parameter are reviewed and a new estimator is proposed. The relationships and discrepancies between the estimators are discussed in order to achieve a clear differentiation. In the second part of the study, the precision in the estimation of autocorrelation is studied. The performance of the ten lag-one autocorrelation estimators is compared in terms of Mean Square Error (combining bias and variance) using data series generated by Monte Carlo simulation. The results show that there is not a single optimal estimator for all conditions, suggesting that the estimator ought to be chosen according to sample size and to the information available of the possible direction of the serial dependence. Additionally, the probability of labelling an actually existing autocorrelation as statistically significant is explored using Monte Carlo sampling. The power estimates obtained are quite similar among the tests associated with the different estimators. These estimates evidence the small probability of detecting autocorrelation in series with less than 20 measurement times.
Resumo:
Hoy día, todo el mundo tiene un ojo puesto en el Mercado Eléctrico en nuestro país. No existe duda alguna sobre la importancia que tiene el comportamiento de la demanda eléctrica. Una de las peculiaridades de la electricidad que producimos, es que hoy por hoy, no existen aún métodos lo suficientemente efectivos para almacenarla, al menos en grandes cantidades. Por consiguiente, la cantidad demandada y la ofertada/producida deben casar de manera casi perfecta. Debido a estas razones, es bastante interesante tratar de predecir el comportamiento futuro de la demanda, estudiando una posible tendencia y/o estacionalidad. Profundizando más en los datos históricos de las demandas; es relativamente sencillo descubrir la gran influencia que la temperatura ambiente, laboralidad o la actividad económica tienen sobre la respuesta de la demanda. Una vez teniendo todo esto claro, podemos decidir cuál es el mejor método para aplicarlo en este tipo de series temporales. Para este fin, los métodos de análisis más comunes han sido presentados y explicados, poniendo de relieve sus principales características, así como sus aplicaciones. Los métodos en los que se ha centrado este proyecto son en los modelos de alisado y medias móviles. Por último, se ha buscado una relación entre la demanda eléctrica peninsular y el precio final que pagamos por la luz.
Resumo:
This paper describes the basis of citation auctions as a new approach to selecting scientific papers for publication. Our main idea is to use an auction for selecting papers for publication through - differently from the state of the art - bids that consist of the number of citations that a scientist expects to receive if the paper is published. Hence, a citation auction is the selection process itself, and no reviewers are involved. The benefits of the proposed approach are two-fold. First, the cost of refereeing will be either totally eliminated or significantly reduced, because the process of citation auction does not need prior understanding of the paper's content to judge the quality of its contribution. Additionally, the method will not prejudge the content of the paper, so it will increase the openness of publications to new ideas. Second, scientists will be much more committed to the quality of their papers, paying close attention to distributing and explaining their papers in detail to maximize the number of citations that the paper receives. Sample analyses of the number of citations collected in papers published in years 1999-2004 for one journal, and in years 2003-2005 for a series of conferences (in a totally different discipline), via Google scholar, are provided. Finally, a simple simulation of an auction is given to outline the behaviour of the citation auction approach
Resumo:
Identification of clouds from satellite images is now a routine task. Observation of clouds from the ground, however, is still needed to acquire a complete description of cloud conditions. Among the standard meteorologicalvariables, solar radiation is the most affected by cloud cover. In this note, a method for using global and diffuse solar radiation data to classify sky conditions into several classes is suggested. A classical maximum-likelihood method is applied for clustering data. The method is applied to a series of four years of solar radiation data and human cloud observations at a site in Catalonia, Spain. With these data, the accuracy of the solar radiation method as compared with human observations is 45% when nine classes of sky conditions are to be distinguished, and it grows significantly to almost 60% when samples are classified in only five different classes. Most errors are explained by limitations in the database; therefore, further work is under way with a more suitable database