10 resultados para Semi-supervised learning
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one
Resumo:
Customer Experience Management (CEM) se ha convertido en un factor clave para el éxito de las empresas. CEM gestiona todas las experiencias que un cliente tiene con un proveedor de servicios o productos. Es muy importante saber como se siente un cliente en cada contacto y entonces poder sugerir automáticamente la próxima tarea a realizar, simplificando tareas realizadas por personas. En este proyecto se desarrolla una solución para evaluar experiencias. Primero se crean servicios web que clasifican experiencias en estados emocionales dependiendo del nivel de satisfacción, interés, … Esto es realizado a través de minería de textos. Se procesa y clasifica información no estructurada (documentos de texto) que representan o describen las experiencias. Se utilizan métodos de aprendizaje supervisado. Esta parte es desarrollada con una arquitectura orientada a servicios (SOA) para asegurar el uso de estándares y que los servicios sean accesibles por cualquier aplicación. Estos servicios son desplegados en un servidor de aplicaciones. En la segunda parte se desarrolla dos aplicaciones basadas en casos reales. En esta fase Cloud computing es clave. Se utiliza una plataforma de desarrollo en línea para crear toda la aplicación incluyendo tablas, objetos, lógica de negocio e interfaces de usuario. Finalmente los servicios de clasificación son integrados a la plataforma asegurando que las experiencias son evaluadas y que las tareas de seguimiento son automáticamente creadas.
Resumo:
Peer-reviewed
Resumo:
Reinforcement learning (RL) is a very suitable technique for robot learning, as it can learn in unknown environments and in real-time computation. The main difficulties in adapting classic RL algorithms to robotic systems are the generalization problem and the correct observation of the Markovian state. This paper attempts to solve the generalization problem by proposing the semi-online neural-Q_learning algorithm (SONQL). The algorithm uses the classic Q_learning technique with two modifications. First, a neural network (NN) approximates the Q_function allowing the use of continuous states and actions. Second, a database of the most representative learning samples accelerates and stabilizes the convergence. The term semi-online is referred to the fact that the algorithm uses the current but also past learning samples. However, the algorithm is able to learn in real-time while the robot is interacting with the environment. The paper shows simulated results with the "mountain-car" benchmark and, also, real results with an underwater robot in a target following behavior
Resumo:
Els canvi recents en els plans d’estudis de la UPC i la UOC tenen en compte el nou espai europeu d’educació superior (EEES). Una de les conseqüències directes a aquests canvis es la necessitat d'aprofitar i optimitzar el temps dedicat a les activitats d'aprenentatge que requereixen la participació activa de l’estudiant i que es realitzen de manera continuada durant el semestre. A més, I'EEES destaca la importància de les pràctiques, les relacions interpersonals i la capacitat per treballar en equip, suggerint la reducció de classes magistrals i l’augment d’activitats que fomentin tant el treball personal de l’estudiant com el cooperatiu. En l’àmbit de la docència informàtica d’assignatures de bases de dades el problema és especialment complex degut a que els enunciats de les proves no acostumen a tenir una solució única. Nosaltres hem desenvolupat una eina anomenada LEARN-SQL, l’objectiu de la qual és corregir automàticament qualsevol tipus de sentència SQL (consultes, actualitzacions, procediments emmagatzemats, disparadors, etc.) i discernir si la resposta aportada per l’estudiant és o no és correcta amb independència de la solució concreta que aquest proposi. D’aquesta manera potenciem l’autoaprenentatge i l’autoavaluació, fent possible la semi-presencialitat supervisada i facilitant l’aprenentatge individualitzat segons les necessitats de cada estudiant. Addicionalment, aquesta eina ajuda als professors a dissenyar les proves d’avaluació, permetent també la opció de revisar qualitativament les solucions aportades pels estudiants. Per últim, el sistema proporciona ajuda als estudiants per a que aprenguin dels seus propis errors, proporcionant retroalimentació de qualitat.
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
The purpose of this paper is to describe the collaboration between librarians and scholars, from a virtual university, in order to facilitate collaborative learning on how to manage information resources. The personal information behaviour of e-learning students when managing information resources for academic, professional and daily life purposes was studied from 24 semi-structured face-to-face interviews. The results of the content analysis of the interview' transcriptions, highlighted that in the workplace and daily life contexts, competent information behaviour is always linked to a proactive attitude, that is to say, that participants seek for information without some extrinsic reward or avoiding punishment. In the academic context, it was observed a low level of information literacy and it seems to be related with a prevalent uninvolved attitude.
Resumo:
Learning object economies are marketplaces for the sharing and reuse of learning objects (LO). There are many motivations for stimulating the development of the LO economy. The main reason is the possibility of providing the right content, at the right time, to the right learner according to adequate quality standards in the context of a lifelong learning process; in fact, this is also the main objective of education. However, some barriers to the development of a LO economy, such as the granularity and editability of LO, must be overcome. Furthermore, some enablers, such as learning design generation and standards usage, must be promoted in order to enhance LO economy. For this article, we introduced the integration of distributed learning object repositories (DLOR) as sources of LO that could be placed in adaptive learning designs to assist teachers’ design work. Two main issues presented as a result: how to access distributed LO, and where to place the LO in the learning design. To address these issues, we introduced two processes: LORSE, a distributed LO searching process, and LOOK, a micro context-based positioning process, respectively. Using these processes, the teachers were able to reuse LO from different sources to semi-automatically generate an adaptive learning design without leaving their virtual environment. A layered evaluation yielded good results for the process of placing learning objects from controlled learning object repositories into a learning design, and permitting educators to define different open issues that must be covered when they use uncontrolled learning object repositories for this purpose. We verified the satisfaction users had with our solution
Resumo:
The purpose of this paper is to describe the collaboration between librarians and scholars, from a virtual university, in order to facilitate collaborative learning on how to manage information resources. The personal information behaviour of e-learning students when managing information resources for academic, professional and daily life purposes was studied from 24 semi-structured face-to-face interviews. The results of the content analysis of the interview' transcriptions, highlighted that in the workplace and daily life contexts, competent information behaviour is always linked to a proactive attitude, that is to say, that participants seek for information without some extrinsic reward or avoiding punishment. In the academic context, it was observed a low level of information literacy and it seems to be related with a prevalent uninvolved attitude.
Resumo:
Automation or semi-automation of learning scenariospecifications is one of the least exploredsubjects in the e-learning research area. There isa need for a catalogue of learning scenarios and atechnique to facilitate automated retrieval of stored specifications. This requires constructing anontology with this goal and is justified inthis paper. This ontology must mainlysupport a specification technique for learning scenarios. This ontology should also be useful in the creation and validation of new scenarios as well as in the personalization of learning scenarios or their monitoring. Thus, after justifying the need for this ontology, a first approach of a possible knowledge domain is presented. An example of a concrete learning scenario illustrates some relevant concepts supported by this ontology in order to define the scenario in such a way that it could be easy to automate.