7 resultados para Richardson
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic operator on a G-manifold. The formula is a sum of integrals over blowups of the strata of the group action and also involves eta invariants of associated elliptic operators. Among the applications, we obtain an index formula for basic Dirac operators on Riemannian foliations, a problem that was open for many years.
Resumo:
We prove a formula for the multiplicities of the index of an equivariant transversally elliptic operator on a G-manifold. The formula is a sum of integrals over blowups of the strata of the group action and also involves eta invariants of associated elliptic operators. Among the applications, we obtain an index formula for basic Dirac operators on Riemannian foliations, a problem that was open for many years.
Resumo:
We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincaré duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.
Resumo:
In this paper we prove a formula for the analytic index of a basic Dirac-type operator on a Riemannian foliation, solving a problem that has been open for many years. We also consider more general indices given by twisting the basic Dirac operator by a representation of the orthogonal group. The formula is a sum of integrals over blowups of the strata of the foliation and also involves eta invariants of associated elliptic operators. As a special case, a Gauss-Bonnet formula for the basic Euler characteristic is obtained using two independent proofs.
Resumo:
We study particle dispersion advected by a synthetic turbulent flow from a Lagrangian perspective and focus on the two-particle and cluster dispersion by the flow. It has been recently reported that Richardson¿s law for the two-particle dispersion can stem from different dispersion mechanisms, and can be dominated by either diffusive or ballistic events. The nature of the Richardson dispersion depends on the parameters of our flow and is discussed in terms of the values of a persistence parameter expressing the relative importance of the two above-mentioned mechanisms. We support this analysis by studying the distribution of interparticle distances, the relative velocity correlation functions, as well as the relative trajectories.
Resumo:
We study particle dispersion advected by a synthetic turbulent flow from a Lagrangian perspective and focus on the two-particle and cluster dispersion by the flow. It has been recently reported that Richardson¿s law for the two-particle dispersion can stem from different dispersion mechanisms, and can be dominated by either diffusive or ballistic events. The nature of the Richardson dispersion depends on the parameters of our flow and is discussed in terms of the values of a persistence parameter expressing the relative importance of the two above-mentioned mechanisms. We support this analysis by studying the distribution of interparticle distances, the relative velocity correlation functions, as well as the relative trajectories.