26 resultados para Regular graphs
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
In a seminal paper [10], Weitz gave a deterministic fully polynomial approximation scheme for counting exponentially weighted independent sets (which is the same as approximating the partition function of the hard-core model from statistical physics) in graphs of degree at most d, up to the critical activity for the uniqueness of the Gibbs measure on the innite d-regular tree. ore recently Sly [8] (see also [1]) showed that this is optimal in the sense that if here is an FPRAS for the hard-core partition function on graphs of maximum egree d for activities larger than the critical activity on the innite d-regular ree then NP = RP. In this paper we extend Weitz's approach to derive a deterministic fully polynomial approximation scheme for the partition function of general two-state anti-ferromagnetic spin systems on graphs of maximum degree d, up to the corresponding critical point on the d-regular tree. The main ingredient of our result is a proof that for two-state anti-ferromagnetic spin systems on the d-regular tree, weak spatial mixing implies strong spatial mixing. his in turn uses a message-decay argument which extends a similar approach proposed recently for the hard-core model by Restrepo et al [7] to the case of general two-state anti-ferromagnetic spin systems.
Resumo:
Let T be the Cayley graph of a finitely generated free group F. Given two vertices in T consider all the walks of a given length between these vertices that at a certain time must follow a number of predetermined steps. We give formulas for the number of such walks by expressing the problem in terms of equations in F and solving the corresponding equations.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Counting labelled planar graphs, and typical properties of random labelled planar graphs, have received much attention recently. We start the process here of extending these investigations to graphs embeddable on any fixed surface S. In particular we show that the labelled graphs embeddable on S have the same growth constant as for planar graphs, and the same holds for unlabelled graphs. Also, if we pick a graph uniformly at random from the graphs embeddable on S which have vertex set {1, . . . , n}, then with probability tending to 1 as n → ∞, this random graph either is connected or consists of one giant component together with a few nodes in small planar components.
Resumo:
Les factoritzacions de la FFT (Fast Fourier Transform) que presenten un patró d’interconnexió regular entre factors o etapes son conegudes com algorismes paral·lels, o algorismes de Pease, ja que foren originalment proposats per Pease. En aquesta contribució s’han desenvolupat noves factoritzacions amb blocs que presenten el patró d’interconnexió regular de Pease. S’ha mostrat com aquests blocs poden ser obtinguts a una escala prèviament seleccionada. Les noves factoritzacions per ambdues FFT i IFFT (Inverse FFT) tenen dues classes de factors: uns pocs factors del tipus Cooley-Tukey i els nous factors que proporcionen la mateix patró d’interconnexió de Pease en blocs. Per a una factorització donada, els blocs comparteixen dimensions, el patró d’interconnexió etapa a etapa i a més cada un d’ells pot ser calculat independentment dels altres.
Resumo:
We introduce and study a class of infinite-horizon nonzero-sum non-cooperative stochastic games with infinitely many interacting agents using ideas of statistical mechanics. First we show, in the general case of asymmetric interactions, the existence of a strategy that allows any player to eliminate losses after a finite random time. In the special case of symmetric interactions, we also prove that, as time goes to infinity, the game converges to a Nash equilibrium. Moreover, assuming that all agents adopt the same strategy, using arguments related to those leading to perfect simulation algorithms, spatial mixing and ergodicity are proved. In turn, ergodicity allows us to prove “fixation”, i.e. that players will adopt a constant strategy after a finite time. The resulting dynamics is related to zerotemperature Glauber dynamics on random graphs of possibly infinite volume.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We propose a restoration algorithm for band limited images that considers irregular(perturbed) sampling, denoising, and deconvolution. We explore the application of a family ofregularizers that allow to control the spectral behavior of the solution combined with the irregular toregular sampling algorithms proposed by H.G. Feichtinger, K. Gr¨ochenig, M. Rauth and T. Strohmer.Moreover, the constraints given by the image acquisition model are incorporated as a set of localconstraints. And the analysis of such constraints leads to an early stopping rule meant to improvethe speed of the algorithm. Finally we present experiments focused on the restoration of satellite images, where the micro-vibrations are responsible of the type of distortions we are considering here. We will compare results of the proposed method with previous methods and show an extension tozoom.
Resumo:
A subclass of games with population monotonic allocation schemes is studied, namelygames with regular population monotonic allocation schemes (rpmas). We focus on theproperties of these games and we prove the coincidence between the core and both theDavis-Maschler bargaining set and the Mas-Colell bargaining set
Resumo:
A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.