102 resultados para Pseudo-pure states
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure states and of the degree of mixing of unknown single-qubit mixed states, of which N identical copies are available. The most general measuring strategies are considered in both situations, to conclude in the first case that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property, optimally.
Resumo:
In the quest to completely describe entanglement in the general case of a finite number of parties sharing a physical system of finite-dimensional Hilbert space an entanglement magnitude is introduced for its pure and mixed states: robustness. It corresponds to the minimal amount of mixing with locally prepared states which washes out all entanglement. It quantifies in a sense the endurance of entanglement against noise and jamming. Its properties are studied comprehensively. Analytical expressions for the robustness are given for pure states of two-party systems, and analytical bounds for mixed states of two-party systems. Specific results are obtained mainly for the qubit-qubit system (qubit denotes quantum bit). As by-products local pseudomixtures are generalized, a lower bound for the relative volume of separable states is deduced, and arguments for considering convexity a necessary condition of any entanglement measure are put forward.
Resumo:
Positive-operator-valued measurements on a finite number of N identically prepared systems of arbitrary spin J are discussed. Pure states are characterized in terms of Bloch-like vectors restricted by a SU(2J+1) covariant constraint. This representation allows for a simple description of the equations to be fulfilled by optimal measurements. We explicitly find the minimal positive-operator-valued measurement for the N=2 case, a rigorous bound for N=3, and set up the analysis for arbitrary N.
Resumo:
We prove for any pure three-quantum-bit state the existence of local bases which allow one to build a set of five orthogonal product states in terms of which the state can be written in a unique form. This leads to a canonical form which generalizes the two-quantum-bit Schmidt decomposition. It is uniquely characterized by the five entanglement parameters. It leads to a complete classification of the three-quantum-bit states. It shows that the right outcome of an adequate local measurement always erases all entanglement between the other two parties.
Resumo:
(2+1)-dimensional anti-de Sitter (AdS) gravity is quantized in the presence of an external scalar field. We find that the coupling between the scalar field and gravity is equivalently described by a perturbed conformal field theory at the boundary of AdS3. This allows us to perform a microscopic computation of the transition rates between black hole states due to absorption and induced emission of the scalar field. Detailed thermodynamic balance then yields Hawking radiation as spontaneous emission, and we find agreement with the semiclassical result, including greybody factors. This result also has application to four and five-dimensional black holes in supergravity.
Resumo:
The purpose of this article is to introduce a Cartesian product structure into the social choice theoretical framework and to examine if new possibility results to Gibbard's and Sen's paradoxes can be developed thanks to it. We believe that a Cartesian product structure is a pertinent way to describe individual rights in the social choice theory since it discriminates the personal features comprised in each social state. First we define some conceptual and formal tools related to the Cartesian product structure. We then apply these notions to Gibbard's paradox and to Sen's impossibility of a Paretian liberal. Finally we compare the advantages of our approach to other solutions proposed in the literature for both impossibility theorems.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
This paper analyzes the advantages and implications of the implementation of a European tax on carbon dioxide emissions as an own resource of the European Union. In contrast to a harmonized tax, which would only have distributive effects within each member state, a tax collected at European scale would also have important distributive effects among different countries. These effects would also depend on the use of tax revenues. The paper investigates the distributive effects among the member states of three tax models: a pure CO2
Resumo:
We first recall the construction of the Chow motive modelling intersection cohomology of a proper surface X and study its fundamental properties. Using Voevodsky's category of effective geometrical motives, we then study the motive of the exceptional divisor D in a non-singular blow-up of X. If all geometric irreducible components of D are of genus zero, then Voevodsky's formalism allows us to construct certain one-extensions of Chow motives, as canonical subquotients of the motive with compact support of the smooth part of X. Specializing to Hilbert-Blumenthal surfaces, we recover a motivic interpretation of a recent construction of A. Caspar.
Resumo:
Recent concessions in France and in the US have resulted in a dramatic difference in the valuation placed on the toll roads; the price paid by the investors in France was twelve times current cash flow whereas investors paid sixty times current cash flow for the U.S. toll roads. In this paper we explore two questions: What accounts for the difference in these multiples, and what are the implications with respect to the public interest. Our analysis illustrates how structural and procedural decisions made by the public owner affect the concession price. Further, the terms of the concession have direct consequences that are enjoyed or borne by the various stakeholders of the toll road.
Resumo:
This paper measures the degree in stock market integration between five Eastern European countries and the Euro-zone. A potentially gradual transition in correlations is accommodated by smooth transition conditional correlation models. We find that the correlation between stock markets has increased from 2001 to 2007. In particular, the Czech and Polish markets show a higher correlation to the Euro-zone. However, this is not a broad-based phenomenon across Eastern Europe. We also find that the increase in correlations is not a reflection of a world-wide phenomenon of financial integration but appears to be specific to the European market. JEL classifications: C32; C51; F36; G15 Keywords: Multivariate GARCH; Smooth Transition Conditional Correlation; Stock Return Comovement; New EU Members.
Resumo:
In this work we introduce and analyze a linear size-structured population model with infinite states-at-birth. We model the dynamics of a population in which individuals have two distinct life-stages: an “active” phase when individuals grow, reproduce and die and a second “resting” phase when individuals only grow. Transition between these two phases depends on individuals’ size. First we show that the problem is governed by a positive quasicontractive semigroup on the biologically relevant state space. Then we investigate, in the framework of the spectral theory of linear operators, the asymptotic behavior of solutions of the model. We prove that the associated semigroup has, under biologically plausible assumptions, the property of asynchronous exponential growth.
Resumo:
Motivated by the modelling of structured parasite populations in aquaculture we consider a class of physiologically structured population models, where individuals may be recruited into the population at different sizes in general. That is, we consider a size-structured population model with distributed states-at-birth. The mathematical model which describes the evolution of such a population is a first order nonlinear partial integro-differential equation of hyperbolic type. First, we use positive perturbation arguments and utilise results from the spectral theory of semigroups to establish conditions for the existence of a positive equilibrium solution of our model. Then we formulate conditions that guarantee that the linearised system is governed by a positive quasicontraction semigroup on the biologically relevant state space. We also show that the governing linear semigroup is eventually compact, hence growth properties of the semigroup are determined by the spectrum of its generator. In case of a separable fertility function we deduce a characteristic equation and investigate the stability of equilibrium solutions in the general case using positive perturbation arguments.
Resumo:
We study simply-connected irreducible non-locally symmetric pseudo-Riemannian Spin(q) manifolds admitting parallel quaternionic spinors.