43 resultados para Pathological Speech Signal Analysis
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Ney is an end-blown flute which is mainly used for Makam music. Although from the beginning of 20th century a score representation based on extending the Western musicis used, because of its rich articulation repertoire, actualNey music can not be totally represented by written score.Ney is still taught and transmitted orally in Turkey. Becauseof that the performance has a distinct and importantrole in Ney music. Therefore signal analysis of ney performancesis crucial for understanding the actual music.Another important aspect which is also a part of the performanceis the articulations that performers apply. In Makam music in Turkey none of the articulations are taught evennamed by teachers. Articulations in Ney are valuable for understanding the real performance. Since articulations are not taught and their places are not marked in the score, the choice and character of the articulation is unique for eachperformer which also makes each performance unique.Our method analyzes audio files of well known Turkish Ney players. In order to obtain our analysis data, we analyzed audio files of 8 different performers vary from 1920to 2000.
Resumo:
Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%.
Resumo:
The Wigner higher order moment spectra (WHOS)are defined as extensions of the Wigner-Ville distribution (WD)to higher order moment spectra domains. A general class oftime-frequency higher order moment spectra is also defined interms of arbitrary higher order moments of the signal as generalizations of the Cohen’s general class of time-frequency representations. The properties of the general class of time-frequency higher order moment spectra can be related to theproperties of WHOS which are, in fact, extensions of the properties of the WD. Discrete time and frequency Wigner higherorder moment spectra (DTF-WHOS) distributions are introduced for signal processing applications and are shown to beimplemented with two FFT-based algorithms. One applicationis presented where the Wigner bispectrum (WB), which is aWHOS in the third-order moment domain, is utilized for thedetection of transient signals embedded in noise. The WB iscompared with the WD in terms of simulation examples andanalysis of real sonar data. It is shown that better detectionschemes can be derived, in low signal-to-noise ratio, when theWB is applied.
Resumo:
We describe one of the research lines of the Grup de Teoria de Funcions de la UAB UB, which deals with sampling and interpolation problems in signal analysis and their connections with complex function theory.
Resumo:
El problema de controlar les emissions de televisió digital a tota Europa pel desenvolupament de receptors robustos i fiables és cada vegada més significant, per això, sorgeix la necessitat d’automatitzar el procés d’anàlisi i control d’aquests senyals. Aquest projecte presenta el desenvolupament software d’una aplicació que vol solucionar una part d’aquest problema. L’aplicació s’encarrega d’analitzar, gestionar i capturar senyals de televisió digital. Aquest document fa una introducció a la matèria central que és la televisió digital i la informació que porten els senyals de televisió, concretament, la que es refereix a l’estàndard "Digital Video Broadcasting". A continuació d’aquesta part, l’escrit es concentra en l’explicació i descripció de les funcionalitats que necessita cobrir l'aplicació, així com introduir i explicar cada etapa d’un procés de desenvolupament software. Finalment, es resumeixen els avantatges de la creació d’aquest programa per l’automatització de l’anàlisi de senyal digital partint d’una optimització de recursos.
Resumo:
Electroencephalographic (EEG) recordings are, most of the times, corrupted by spurious artifacts, which should be rejected or cleaned by the practitioner. As human scalp EEG screening is error-prone, automatic artifact detection is an issue of capital importance, to ensure objective and reliable results. In this paper we propose a new approach for discrimination of muscular activity in the human scalp quantitative EEG (QEEG), based on the time-frequency shape analysis. The impact of the muscular activity on the EEG can be evaluated from this methodology. We present an application of this scoring as a preprocessing step for EEG signal analysis, in order to evaluate the amount of muscular activity for two set of EEG recordings for dementia patients with early stage of Alzheimer’s disease and control age-matched subjects.
Resumo:
We present a new technique for audio signal comparison based on tonal subsequence alignment and its application to detect cover versions (i.e., different performances of the same underlying musical piece). Cover song identification is a task whose popularity has increased in the Music Information Retrieval (MIR) community along in the past, as it provides a direct and objective way to evaluate music similarity algorithms.This article first presents a series of experiments carried outwith two state-of-the-art methods for cover song identification.We have studied several components of these (such as chroma resolution and similarity, transposition, beat tracking or Dynamic Time Warping constraints), in order to discover which characteristics would be desirable for a competitive cover song identifier. After analyzing many cross-validated results, the importance of these characteristics is discussed, and the best-performing ones are finally applied to the newly proposed method. Multipleevaluations of this one confirm a large increase in identificationaccuracy when comparing it with alternative state-of-the-artapproaches.
Resumo:
The linear prediction coding of speech is based in the assumption that the generation model is autoregresive. In this paper we propose a structure to cope with the nonlinear effects presents in the generation of the speech signal. This structure will consist of two stages, the first one will be a classical linear prediction filter, and the second one will model the residual signal by means of two nonlinearities between a linear filter. The coefficients of this filter are computed by means of a gradient search on the score function. This is done in order to deal with the fact that the probability distribution of the residual signal still is not gaussian. This fact is taken into account when the coefficients are computed by a ML estimate. The algorithm based on the minimization of a high-order statistics criterion, uses on-line estimation of the residue statistics and is based on blind deconvolution of Wiener systems [1]. Improvements in the experimental results with speech signals emphasize on the interest of this approach.
Resumo:
In this paper we show how a nonlinear preprocessing of speech signal -with high noise- based on morphological filters improves the performance of robust algorithms for pitch tracking (RAPT). This result happens for a very simple morphological filter. More sophisticated ones could even improve such results. Mathematical morphology is widely used in image processing and has a great amount of applications. Almost all its formulations derived in the two-dimensional framework are easily reformulated to be adapted to one-dimensional context
Resumo:
Complexity of biological function relies on large networks of interacting molecules. However, the evolutionary properties of these networks are not fully understood. It has been shown that selective pressures depend on the position of genes in the network. We have previously shown that in the Drosophila insulin/target of rapamycin (TOR) signal transduction pathway there is a correlation between the pathway position and the strength of purifying selection, with the downstream genes being most constrained. In this study, we investigated the evolutionary dynamics of this well-characterized pathway in vertebrates. More specifically, we determined the impact of natural selection on the evolution of 72 genes of this pathway. We found that in vertebrates there is a similar gradient of selective constraint in the insulin/TOR pathway to that found in Drosophila. This feature is neither the result of a polarity in the impact of positive selection nor of a series of factors affecting selective constraint levels (gene expression level and breadth, codon bias, protein length, and connectivity). We also found that pathway genes encoding physically interacting proteins tend to evolve under similar selective constraints. The results indicate that the architecture of the vertebrate insulin/TOR pathway constrains the molecular evolution of its components. Therefore, the polarity detected in Drosophila is neither specific nor incidental of this genus. Hence, although the underlying biological mechanisms remain unclear, these may be similar in both vertebrates and Drosophila.
Resumo:
The work presented here is part of a larger study to identify novel technologies and biomarkers for early Alzheimer disease (AD) detection and it focuses on evaluating the suitability of a new approach for early AD diagnosis by non-invasive methods. The purpose is to examine in a pilot study the potential of applying intelligent algorithms to speech features obtained from suspected patients in order to contribute to the improvement of diagnosis of AD and its degree of severity. In this sense, Artificial Neural Networks (ANN) have been used for the automatic classification of the two classes (AD and control subjects). Two human issues have been analyzed for feature selection: Spontaneous Speech and Emotional Response. Not only linear features but also non-linear ones, such as Fractal Dimension, have been explored. The approach is non invasive, low cost and without any side effects. Obtained experimental results were very satisfactory and promising for early diagnosis and classification of AD patients.
Resumo:
Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-economic impact in Western countries. Therefore it is one of the most active research areas today. Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose this disease and determine its degree of severity. Two human capabilities relevant in communication have been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s disease patients.
Resumo:
When dealing with nonlinear blind processing algorithms (deconvolution or post-nonlinear source separation), complex mathematical estimations must be done giving as a result very slow algorithms. This is the case, for example, in speech processing, spike signals deconvolution or microarray data analysis. In this paper, we propose a simple method to reduce computational time for the inversion of Wiener systems or the separation of post-nonlinear mixtures, by using a linear approximation in a minimum mutual information algorithm. Simulation results demonstrate that linear spline interpolation is fast and accurate, obtaining very good results (similar to those obtained without approximation) while computational time is dramatically decreased. On the other hand, cubic spline interpolation also obtains similar good results, but due to its intrinsic complexity, the global algorithm is much more slow and hence not useful for our purpose.
Resumo:
Alzheimer’s disease (AD) is the most prevalent form of progressive degenerative dementia and it has a high socio-economic impact in Western countries, therefore is one of the most active research areas today. Its diagnosis is sometimes made by excluding other dementias, and definitive confirmation must be done trough a post-mortem study of the brain tissue of the patient. The purpose of this paper is to contribute to im-provement of early diagnosis of AD and its degree of severity, from an automatic analysis performed by non-invasive intelligent methods. The methods selected in this case are Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature (ET), that have the great advantage of being non invasive, low cost and without any side effects.