157 resultados para Pareto optimal solutions
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the ethanol production in the fermentation of Saccharomyces cerevisiae.
Resumo:
For the many-to-one matching model in which firms have substitutable and quota q-separable preferences over subsets of workers we show that the workers-optimal stable mechanism is group strategy-proof for the workers. In order to prove this result, we also show that under this domain of preferences (which contains the domain of responsive preferences of the college admissions problem) the workers-optimal stable matching is weakly Pareto optimal for the workers and the Blocking Lemma holds as well. We exhibit an example showing that none of these three results remain true if the preferences of firms are substitutable but not quota q-separable.
Resumo:
We show that incentive efficient allocations in economies with adverse selection and moral hazard can be determined as optimal solutions to a linear programming problem and we use duality theory to obtain a complete characterization of the optima. Our dual analysis identifies welfare effects associated with the incentives of the agents to truthfully reveal their private information. Because these welfare effects may generate non-convexities, incentive efficient allocations may involve randomization. Other properties of incentive efficient allocations are also derived.
Resumo:
We consider linear optimization over a nonempty convex semi-algebraic feasible region F. Semidefinite programming is an example. If F is compact, then for almost every linear objective there is a unique optimal solution, lying on a unique \active" manifold, around which F is \partly smooth", and the second-order sufficient conditions hold. Perturbing the objective results in smooth variation of the optimal solution. The active manifold consists, locally, of these perturbed optimal solutions; it is independent of the representation of F, and is eventually identified by a variety of iterative algorithms such as proximal and projected gradient schemes. These results extend to unbounded sets F.
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid (whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then the problem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
We address the question of whether growth and welfare can be higher in crisis prone economies. First, we show that there is a robust empirical link between per-capita GDP growth and negative skewness of credit growth across countries with active financial markets. That is, countries that have experienced occasional crises have grown on average faster than countries with smooth credit conditions. We then present a two-sector endogenous growth model in which financial crises can occur, and analyze the relationship between financial fragility and growth. The underlying credit market imperfections generateborrowing constraints, bottlenecks and low growth. We show that under certain conditions endogenous real exchange rate risk arises and firms find it optimal to take on credit risk in the form of currency mismatch. Along such a risky path average growth is higher, but self-fulfilling crises occur occasionally. Furthermore, we establish conditions under which the adoption of credit risk is welfare improving and brings the allocation nearer to the Pareto optimal level. The design of the model is motivated by several features of recent crises: credit risk in the form of foreign currency denominated debt; costly crises that generate firesales and widespread bankruptcies; and asymmetric sectorial responses, wherethe nontradables sector falls more than the tradables sector in the wake of crises.
Resumo:
This paper studies the efficiency of equilibria in a productive OLG economy where the process of financial intermediation is characterized by costly state verification. Both competitive equilibria and Constrained Pareto Optimal allocations are characterized. It is shown that market outcomes can be socially inefficient, even when a weaker notion than Pareto optimality is considered.
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid(whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then theproblem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
This paper introduces the approach of using Total Unduplicated Reach and Frequency analysis (TURF) to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. The results obtained through our exact algorithm are presented, and this method shows to be extremely efficient both in obtaining optimal solutions and in computing time for very large instances of the problem at hand. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.
Resumo:
This paper looks at the dynamic management of risk in an economy with discrete time consumption and endowments and continuous trading. I study how agents in such an economy deal with all the risk in the economy and attain their Pareto optimal allocations by trading in a few natural securities: private insurance contracts and a common set of derivatives on the aggregate endowment. The parsimonious nature ofthe implied securities needed for Pareto optimality suggests that insuch contexts complete markets is a very reasonable assumption.
Resumo:
In a previous paper a novel Generalized Multiobjective Multitree model (GMM-model) was proposed. This model considers for the first time multitree-multicast load balancing with splitting in a multiobjective context, whose mathematical solution is a whole Pareto optimal set that can include several results than it has been possible to find in the publications surveyed. To solve the GMM-model, in this paper a multi-objective evolutionary algorithm (MOEA) inspired by the Strength Pareto Evolutionary Algorithm (SPEA) is proposed. Experimental results considering up to 11 different objectives are presented for the well-known NSF network, with two simultaneous data flows
Resumo:
We show a standard model where the optimal tax reform is to cut labor taxes and leave capital taxes very high in the short and medium run. Only in the very long run would capital taxes be zero. Our model is a version of Chamley??s, with heterogeneous agents, without lump sum transfers, an upper bound on capital taxes, and a focus on Pareto improving plans. For our calibration labor taxes should be low for the first ten to twenty years, while capital taxes should be at their maximum. This policy ensures that all agents benefit from the tax reform and that capital grows quickly after when the reform begins. Therefore, the long run optimal tax mix is the opposite from the short and medium run tax mix. The initial labor tax cut is financed by deficits that lead to a positive long run level of government debt, reversing the standard prediction that government accumulates savings in models with optimal capital taxes. If labor supply is somewhat elastic benefits from tax reform are high and they can be shifted entirely to capitalists or workers by varying the length of the transition. With inelastic labor supply there is an increasing part of the equilibrium frontier, this means that the scope for benefitting the workers is limited and the total benefits from reforming taxes are much lower.
Resumo:
In the analysis of equilibrium policies in a di erential game, if agents have different time preference rates, the cooperative (Pareto optimum) solution obtained by applying the Pontryagin's Maximum Principle becomes time inconsistent. In this work we derive a set of dynamic programming equations (in discrete and continuous time) whose solutions are time consistent equilibrium rules for N-player cooperative di erential games in which agents di er in their instantaneous utility functions and also in their discount rates of time preference. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in in nite horizon is also discussed.
Resumo:
In the analysis of equilibrium policies in a di erential game, if agents have different time preference rates, the cooperative (Pareto optimum) solution obtained by applying the Pontryagin's Maximum Principle becomes time inconsistent. In this work we derive a set of dynamic programming equations (in discrete and continuous time) whose solutions are time consistent equilibrium rules for N-player cooperative di erential games in which agents di er in their instantaneous utility functions and also in their discount rates of time preference. The results are applied to the study of a cake-eating problem describing the management of a common property exhaustible natural resource. The extension of the results to a simple common property renewable natural resource model in in nite horizon is also discussed.
Resumo:
The achievable region approach seeks solutions to stochastic optimisation problems by: (i) characterising the space of all possible performances(the achievable region) of the system of interest, and (ii) optimisingthe overall system-wide performance objective over this space. This isradically different from conventional formulations based on dynamicprogramming. The approach is explained with reference to a simpletwo-class queueing system. Powerful new methodologies due to the authorsand co-workers are deployed to analyse a general multiclass queueingsystem with parallel servers and then to develop an approach to optimalload distribution across a network of interconnected stations. Finally,the approach is used for the first time to analyse a class of intensitycontrol problems.