5 resultados para PHOSPHATASE-ACTIVITY
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The effects of experimental phosphorus enrichments on alkaline phosphatase activity (APA) of the seagrass Posidonia oceanica (L.) Delile were tested. Short-term additions (as phosphate, 12 hours, in the laboratory) decreased APA by 18-2896, depending on the plant part considered (roots, young leaves or old leaves). The values of APA after this treatment were well correlated with interna1 phosphorus pools (as P concentration in plant tissues). Long-term additions (as phosphate, added to the sediment, 1 month in situ) decreased APA by 40-75%, also depending on the plant part. We conclude that alkaline phosphatase activity is a good indicator of P deficiency in this seagrass. We used this indicator to assess the P-nutritional status in a series of meadows in the NW Mediterranean, finding a high geographical variability, but correlations between APA and basic features of the meadows (carbonate content of the sediment, organic content of the sediment, shoot density, etc.) were not significant. Consequently, phosphorus deficiency does not seem to be directly related to these descriptors.
Resumo:
Report for the scientific sojourn at the Imperial College of London, United Kingdom, from 2007 to 2009. PTEN is a tumour suppressor enzyme that plays important roles in the PI3K pathway which regulates growth, proliferation and survival and is thus related to many human disorders such as diabetes, neurodegenerative diseases, cardiovascular complications and cancer. It is hence of great interest to understand in detail its molecular behaviour and to find small molecules that can switch on/off its activity. For this purpose, metal complexes have been synthesized and preliminary studies in vivo show that all are capable of inhibiting PTEN.
Resumo:
Background PPP1R6 is a protein phosphatase 1 glycogen-targeting subunit (PP1-GTS) abundant in skeletal muscle with an undefined metabolic control role. Here PPP1R6 effects on myotube glycogen metabolism, particle size and subcellular distribution are examined and compared with PPP1R3C/PTG and PPP1R3A/GM. Results PPP1R6 overexpression activates glycogen synthase (GS), reduces its phosphorylation at Ser-641/0 and increases the extracted and cytochemically-stained glycogen content, less than PTG but more than GM. PPP1R6 does not change glycogen phosphorylase activity. All tested PP1-GTS-cells have more glycogen particles than controls as found by electron microscopy of myotube sections. Glycogen particle size is distributed for all cell-types in a continuous range, but PPP1R6 forms smaller particles (mean diameter 14.4 nm) than PTG (36.9 nm) and GM (28.3 nm) or those in control cells (29.2 nm). Both PPP1R6- and GM-derived glycogen particles are in cytosol associated with cellular structures; PTG-derived glycogen is found in membrane- and organelle-devoid cytosolic glycogen-rich areas; and glycogen particles are dispersed in the cytosol in control cells. A tagged PPP1R6 protein at the C-terminus with EGFP shows a diffuse cytosol pattern in glucose-replete and -depleted cells and a punctuate pattern surrounding the nucleus in glucose-depleted cells, which colocates with RFP tagged with the Golgi targeting domain of β-1,4-galactosyltransferase, according to a computational prediction for PPP1R6 Golgi location. Conclusions PPP1R6 exerts a powerful glycogenic effect in cultured muscle cells, more than GM and less than PTG. PPP1R6 protein translocates from a Golgi to cytosolic location in response to glucose. The molecular size and subcellular location of myotube glycogen particles is determined by the PPP1R6, PTG and GM scaffolding.
Resumo:
The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.
Resumo:
Plants synthesize a myriad of isoprenoid products that are required both for essential constitutive processes and for adaptive responses to the environment. The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes a key regulatory step of the mevalonate pathway for isoprenoid biosynthesis and is modulated by many endogenous and external stimuli. In spite of that, no protein factor interacting with and regulating plant HMGR in vivo has been described so far. Here, we report the identification of two B99 regulatory subunits of protein phosphatase 2A (PP2A), designated B99a and B99b, that interact with HMGR1S and HMGR1L, the major isoforms of Arabidopsis thaliana HMGR. B99a and B99b are Ca2+ binding proteins of the EF-hand type. We show that HMGR transcript, protein, and activity levels are modulated by PP2A in Arabidopsis. When seedlings are transferred to salt-containing medium, B99a and PP2A mediate the decrease and subsequent increase of HMGR activity, which results from a steady rise of HMGR1-encoding transcript levels and an initial sharper reduction of HMGR protein level. In unchallenged plants, PP2A is a posttranslational negative regulator of HMGR activity with the participation of B99b. Our data indicate that PP2A exerts multilevel control on HMGR through the fivemember B99 protein family during normal development and in response to a variety of stress conditions.