13 resultados para PFGE
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
Objetivos: 1.-Identificar los factores clínicos y microbiológicos que ayuden a predecir la aparición de exacerbaciones en la EPOC. 2.-Diagnóstico y cuantificación de las especies bacterianas aisladas en esputo (fase de exacerbación y estable) .3.- Tipificación genotípica secuencial de las cepas de H. influenzae y P. aeruginosa. 4.- Impacto del tratamiento antibiótico en la aparición de resistencias en estos patógenos. 5.- Diseño: Estudio prospectivo (3 años). Ámbito del estudio: Hospital Universitario de tercer nivel. Pacientes con EPOC grave atendidos en la Consulta Monográfica de EPOC del Servicio de Neumología. Métodos microbiológicos: Cuantificación de la carga bacteriana en muestras respiratorias en fase estable y en exacerbación. Estudio de la sensibilidad “in vitro”. Tipificación molecular (PFGE y MLST) de H. influenzae y P. aeruginosa. Estudio de los genes de virulencia de H. influenzae mediante PCR. Resultados: Desde Febrero de 2010 a Julio de 2011 se han incluido 77 pacientes. Los microorganismos más frecuentemente aislados en fase de exacerbación fueron: P. aeruginosa (29.3%), H. influenzae (15.92%), M. catarrhalis (12.74%), S. pneumoniae (10.19%) y S. aureus (5.10%). En los 88 episodios por P. aeruginosa se detectaron 38 genotipos diferentes. En los 41 episodios por H. influenzae se detectaron 39 genotipos diferentes. El 10% de los episodios fueron polimicrobianos. Los episodios de EAEPOC y de fase estable tuvieron una distribución de microorganismos similar. Sin embargo, cuando se cuantificaron las cargas bacterianas fueron mayores en EAEPOC (intervalo 4x107 -2x108) que en fase estable (intervalo 2x105 -4x107). Conclusiones: El genotipo de las cepas de P. aeruginosa y H. influenzae aisladas en EAEPOC difieren de un paciente a otro, sin embargo la mayoría de los episodios de cada paciente están causados por un genotipo único.
Resumo:
Objectives: To analyze the role of the capsular type in pneumococci causing relapse and reinfection episodes of acute exacerbation in COPD patients. Methods: A total of 79 patients with 116 recurrent episodes of acute exacerbations caused by S. pneumoniae were included into this study (1995–2010). A relapse episode was considered when two consecutive episodes were caused by the same strain (identical serotype and genotype); otherwise it was considered reinfection. Antimicrobial susceptibility testing (microdilution), serotyping (PCR, Quellung) and molecular typing (PFGE/MLST) were performed. Results: Among 116 recurrent episodes, 81 (69.8%) were reinfections, caused by the acquisition of a new pneumococcus,and 35 (30.2%) were relapses, caused by a pre-existing strain. Four serotypes (9V, 19F, 15A and 11A) caused the majority (60.0%) of relapses. When serotypes causing relapses and reinfection were compared, only two serotypes were associatedwith relapses: 9V (OR 8.0; 95% CI, 1.34–85.59) and 19F (OR 16.1; 95% CI, 1.84–767.20). Pneumococci isolated from relapses were more resistant to antimicrobials than those isolated from the reinfection episodes: penicillin (74.3% vs. 34.6%, p,0.001), ciprofloxacin (25.7% vs. 9.9%, p,0.027), levofloxacin (22.9% vs. 7.4%, p = 0.029), and co-trimoxazole (54.3% vs. 25.9%, p,0.001). Conclusions: Although the acquisition of a new S. pneumoniae strain was the most frequent cause of recurrences, a third ofthe recurrent episodes were caused by a pre-existing strain. These relapse episodes were mainly caused by serotypes 9V and 19F, suggesting an important role for capsular type
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
This study explored the evolutionary mechanism by which the clinical isolate PA110514 yields the imipenemresistant derivative PA116136. Both isolates were examined by PFGE and SDS-PAGE, which led to the identification of a new insertion sequence, ISPa133. This element was shown to have distinct chromosomal locations in each of the original isolates that appeared to explain the differences in imipenem susceptibilty. In strain PA110514, ISPa133 is located 56 nucleotides upstream of the translational start codon, which has no effect on expression of the porin OprD. However, in strain PA116136 ISPa133 it is located in front of nucleotide 696 and, by interrupting the coding region, causes a loss of OprD expression, thus conferring imipenem resistance. In vitro experiments mimicking the natural conditions of selective pressure yielded imipenem-resistant strains in which ISPa133 similarly interrupted oprD. A mechanism is proposed whereby ISPa133 acts as a mobile switch, with its position in oprD depending on the degree of selective pressure exerted by imipenem
Resumo:
Objectives: To analyze the role of the capsular type in pneumococci causing relapse and reinfection episodes of acute exacerbation in COPD patients. Methods: A total of 79 patients with 116 recurrent episodes of acute exacerbations caused by S. pneumoniae were included into this study (1995–2010). A relapse episode was considered when two consecutive episodes were caused by the same strain (identical serotype and genotype); otherwise it was considered reinfection. Antimicrobial susceptibility testing (microdilution), serotyping (PCR, Quellung) and molecular typing (PFGE/MLST) were performed. Results: Among 116 recurrent episodes, 81 (69.8%) were reinfections, caused by the acquisition of a new pneumococcus,and 35 (30.2%) were relapses, caused by a pre-existing strain. Four serotypes (9V, 19F, 15A and 11A) caused the majority (60.0%) of relapses. When serotypes causing relapses and reinfection were compared, only two serotypes were associatedwith relapses: 9V (OR 8.0; 95% CI, 1.34–85.59) and 19F (OR 16.1; 95% CI, 1.84–767.20). Pneumococci isolated from relapses were more resistant to antimicrobials than those isolated from the reinfection episodes: penicillin (74.3% vs. 34.6%, p,0.001), ciprofloxacin (25.7% vs. 9.9%, p,0.027), levofloxacin (22.9% vs. 7.4%, p = 0.029), and co-trimoxazole (54.3% vs. 25.9%, p,0.001). Conclusions: Although the acquisition of a new S. pneumoniae strain was the most frequent cause of recurrences, a third ofthe recurrent episodes were caused by a pre-existing strain. These relapse episodes were mainly caused by serotypes 9V and 19F, suggesting an important role for capsular type
Resumo:
Nontypable Haemophilus influenzae (NTHi) has emerged as an important opportunistic pathogen causing infection in adults suffering obstructive lung diseases. Existing evidence associates chronic infection by NTHi to the progression of the chronic respiratory disease, but specific features of NTHi associated with persistence have not been comprehensively addressed. To provide clues about adaptive strategies adopted by NTHi during persistent infection, we compared sequential persistent isolates with newly acquired isolates in sputa from six patients with chronic obstructive lung disease. Pulse field gel electrophoresis (PFGE) identified three patients with consecutive persistent strains and three with new strains. Phenotypic characterisation included infection of respiratory epithelial cells, bacterial self-aggregation, biofilm formation and resistance to antimicrobial peptides (AMP). Persistent isolates differed from new strains in showing low epithelial adhesion and inability to form biofilms when grown under continuous-flow culture conditions in microfermenters. Self-aggregation clustered the strains by patient, not by persistence. Increasing resistance to AMPs was observed for each series of persistent isolates; this was not associated with lipooligosaccharide decoration with phosphorylcholine or with lipid A acylation. Variation was further analyzed for the series of three persistent isolates recovered from patient 1. These isolates displayed comparable growth rate, natural transformation frequency and murine pulmonary infection. Genome sequencing of these three isolates revealed sequential acquisition of single-nucleotide variants in the AMP permease sapC, the heme acquisition systems hgpB, hgpC, hup and hxuC, the 3-deoxy-D-manno-octulosonic acid kinase kdkA, the long-chain fatty acid transporter ompP1, and the phosphoribosylamine glycine ligase purD. Collectively, we frame a range of pathogenic traits and a repertoire of genetic variants in the context of persistent infection by NTHi.