42 resultados para PARAMETERS CALIBRATION

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catadioptric sensors are combinations of mirrors and lenses made in order to obtain a wide field of view. In this paper we propose a new sensor that has omnidirectional viewing ability and it also provides depth information about the nearby surrounding. The sensor is based on a conventional camera coupled with a laser emitter and two hyperbolic mirrors. Mathematical formulation and precise specifications of the intrinsic and extrinsic parameters of the sensor are discussed. Our approach overcomes limitations of the existing omni-directional sensors and eventually leads to reduced costs of production

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using a suitable Hull and White type formula we develop a methodology to obtain asecond order approximation to the implied volatility for very short maturities. Using thisapproximation we accurately calibrate the full set of parameters of the Heston model. Oneof the reasons that makes our calibration for short maturities so accurate is that we alsotake into account the term-structure for large maturities. We may say that calibration isnot "memoryless", in the sense that the option's behavior far away from maturity doesinfluence calibration when the option gets close to expiration. Our results provide a wayto perform a quick calibration of a closed-form approximation to vanilla options that canthen be used to price exotic derivatives. The methodology is simple, accurate, fast, andit requires a minimal computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the winters of 1999 and 2000 large avalanches occurred in the ski resort of Las Leñas (Los Andes, Mendoza, Argentina). On 8 September 1999 an avalanche of new, dry snow ran over a path with a 1000 m vertical drop. On 30 June and on 1 July 2000 five avalanches of similar vertical drop, which start with new snow, entrained very wet snow during their descent, and evolved into dense snow avalanches. To use the MN2D dynamics model correctly, calibration of model parameters is necessary. Also, no previous works with the use of dynamics models exist in South America. The events used to calibrate the model occurred during the winters of 1999 and 2000 and are a good sample of the kind of avalanches which can occur in this area of the Andes range. By considering the slope morphology and topography, the snow and meteorological conditions and the results of the model simulations, it was estimated that these avalanches were not extreme events with a return period greater than one hundred years. This implies that, in natural conditions, bigger, extreme avalanches could happen. In this work, the MN2D dynamics model is calibrated with two different avalanches of the same magnitude: dry and wet. The importance of the topographic data in the simulation is evaluated. It is concluded that MN2D dynamics model can be used to simulate dry extreme avalanches in Argentinean Andes but not to simulate extreme wet avalanches, which are much more sensitive to the topography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show how to calibrate CES production and utility functions when indirect taxation affecting inputs and consumption is present. These calibrated functions can then be used in computable general equilibrium models. Taxation modifies the standard calibration procedures since any taxed good has two associated prices and a choice of reference value units has to be made. We also provide an example of computer code to solve the calibration of CES utilities under two alternate normalizations. To our knowledge, this paper fills a methodological gap in the CGE literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Para medir los coeficientes de transmisión y reflexión, S21 y S11, de diferentes materiales o muestras planas, se usa un sistema de toma de medidas en espacio libre operando banda W (75 – 110 GHz). Usando estos parámetros, S21 y S11, podemos calcular la permitividad dieléctrica relativa compleja (Er ) y la permeabilidad magnética relativa compleja (μr) mediante un proceso llamado NRW (Nicolson-Ross-Weir). El sistema para medir consiste en dos antenas de bocina, una transmisora y otra receptora, dos espejos con los que obtenemos una onda plana para medir las propiedades del material y un ordenador o dispositivo que calcula los resultados. Este dispositivo requiere de calibración para la obtención de resultados óptimos. Dicho sistema se puede simular de manera ideal con un software llamado ADS (Assistance Design System) para el estudio y comparación de grosores, permitividades dieléctricas relativas y permeabilidades magnéticas relativas de los materiales en función de la frecuencia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low concentrations of elements in geochemical analyses have the peculiarity of beingcompositional data and, for a given level of significance, are likely to be beyond thecapabilities of laboratories to distinguish between minute concentrations and completeabsence, thus preventing laboratories from reporting extremely low concentrations of theanalyte. Instead, what is reported is the detection limit, which is the minimumconcentration that conclusively differentiates between presence and absence of theelement. A spatially distributed exhaustive sample is employed in this study to generateunbiased sub-samples, which are further censored to observe the effect that differentdetection limits and sample sizes have on the inference of population distributionsstarting from geochemical analyses having specimens below detection limit (nondetects).The isometric logratio transformation is used to convert the compositional data in thesimplex to samples in real space, thus allowing the practitioner to properly borrow fromthe large source of statistical techniques valid only in real space. The bootstrap method isused to numerically investigate the reliability of inferring several distributionalparameters employing different forms of imputation for the censored data. The casestudy illustrates that, in general, best results are obtained when imputations are madeusing the distribution best fitting the readings above detection limit and exposes theproblems of other more widely used practices. When the sample is spatially correlated, itis necessary to combine the bootstrap with stochastic simulation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative or algorithmic trading is the automatization of investments decisions obeying a fixed or dynamic sets of rules to determine trading orders. It has increasingly made its way up to 70% of the trading volume of one of the biggest financial markets such as the New York Stock Exchange (NYSE). However, there is not a signi cant amount of academic literature devoted to it due to the private nature of investment banks and hedge funds. This projects aims to review the literature and discuss the models available in a subject that publications are scarce and infrequently. We review the basic and fundamental mathematical concepts needed for modeling financial markets such as: stochastic processes, stochastic integration and basic models for prices and spreads dynamics necessary for building quantitative strategies. We also contrast these models with real market data with minutely sampling frequency from the Dow Jones Industrial Average (DJIA). Quantitative strategies try to exploit two types of behavior: trend following or mean reversion. The former is grouped in the so-called technical models and the later in the so-called pairs trading. Technical models have been discarded by financial theoreticians but we show that they can be properly cast into a well defined scientific predictor if the signal generated by them pass the test of being a Markov time. That is, we can tell if the signal has occurred or not by examining the information up to the current time; or more technically, if the event is F_t-measurable. On the other hand the concept of pairs trading or market neutral strategy is fairly simple. However it can be cast in a variety of mathematical models ranging from a method based on a simple euclidean distance, in a co-integration framework or involving stochastic differential equations such as the well-known Ornstein-Uhlenbeck mean reversal ODE and its variations. A model for forecasting any economic or financial magnitude could be properly defined with scientific rigor but it could also lack of any economical value and be considered useless from a practical point of view. This is why this project could not be complete without a backtesting of the mentioned strategies. Conducting a useful and realistic backtesting is by no means a trivial exercise since the \laws" that govern financial markets are constantly evolving in time. This is the reason because we make emphasis in the calibration process of the strategies' parameters to adapt the given market conditions. We find out that the parameters from technical models are more volatile than their counterpart form market neutral strategies and calibration must be done in a high-frequency sampling manner to constantly track the currently market situation. As a whole, the goal of this project is to provide an overview of a quantitative approach to investment reviewing basic strategies and illustrating them by means of a back-testing with real financial market data. The sources of the data used in this project are Bloomberg for intraday time series and Yahoo! for daily prices. All numeric computations and graphics used and shown in this project were implemented in MATLAB^R scratch from scratch as a part of this thesis. No other mathematical or statistical software was used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El principal objectiu del projecte era desenvolupar millores conceptuals i metodològiques que permetessin una millor predicció dels canvis en la distribució de les espècies (a una escala de paisatge) derivats de canvis ambientals en un context dominat per pertorbacions. En un primer estudi, vàrem comparar l'eficàcia de diferents models dinàmics per a predir la distribució de l'hortolà (Emberiza hortulana). Els nostres resultats indiquen que un model híbrid que combini canvis en la qualitat de l'hàbitat, derivats de canvis en el paisatge, amb un model poblacional espacialment explícit és una aproximació adequada per abordar canvis en la distribució d'espècies en contextos de dinàmica ambiental elevada i una capacitat de dispersió limitada de l'espècie objectiu. En un segon estudi abordarem la calibració mitjançant dades de seguiment de models de distribució dinàmics per a 12 espècies amb preferència per hàbitats oberts. Entre les conclusions extretes destaquem: (1) la necessitat de que les dades de seguiment abarquin aquelles àrees on es produeixen els canvis de qualitat; (2) el biaix que es produeix en la estimació dels paràmetres del model d'ocupació quan la hipòtesi de canvi de paisatge o el model de qualitat d'hàbitat són incorrectes. En el darrer treball estudiarem el possible impacte en 67 espècies d’ocells de diferents règims d’incendis, definits a partir de combinacions de nivells de canvi climàtic (portant a un augment esperat de la mida i freqüència d’incendis forestals), i eficiència d’extinció per part dels bombers. Segons els resultats dels nostres models, la combinació de factors antropogènics del regim d’incendis, tals com l’abandonament rural i l’extinció, poden ser més determinants per als canvis de distribució que els efectes derivats del canvi climàtic. Els productes generats inclouen tres publicacions científiques, una pàgina web amb resultats del projecte i una llibreria per a l'entorn estadístic R.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper points out an empirical puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, both sticky wages and match-specific productivity shocks help the model reproduce the stylized facts: both make the firm's flow of surplus more procyclical, thus making hiring more procyclical too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the standard kernel density estimate, it is known that one can tune the bandwidth such that the expected L1 error is within a constant factor of the optimal L1 error (obtained when one is allowed to choose the bandwidth with knowledge of the density). In this paper, we pose the same problem for variable bandwidth kernel estimates where the bandwidths are allowed to depend upon the location. We show in particular that for positive kernels on the real line, for any data-based bandwidth, there exists a densityfor which the ratio of expected L1 error over optimal L1 error tends to infinity. Thus, the problem of tuning the variable bandwidth in an optimal manner is ``too hard''. Moreover, from the class of counterexamples exhibited in the paper, it appears thatplacing conditions on the densities (monotonicity, convexity, smoothness) does not help.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a simple and general model for computing the Ramsey optimal inflation tax, which includes several models from the previous literature as special cases. We show that it cannot be claimed that the Friedman rule is always optimal (or always non--optimal) on theoretical grounds. The Friedman rule is optimal or not, depending on conditions related to the shape of various relevant functions. One contribution of this paper is to relate these conditions to {\it measurable} variables such as the interest rate or the consumption elasticity of money demand. We find that it tends to be optimal to tax money when there are economies of scale in the demand for money (the scale elasticity is smaller than one) and/or when money is required for the payment of consumption or wage taxes. We find that it tends to be optimal to tax money more heavily when the interest elasticity of money demand is small. We present empirical evidence on the parameters that determine the optimal inflation tax. Calibrating the model to a variety of empirical studies yields a optimal nominal interest rate of less than 1\%/year, although that finding is sensitive to the calibration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most methods for small-area estimation are based on composite estimators derived from design- or model-based methods. A composite estimator is a linear combination of a direct and an indirect estimator with weights that usually depend on unknown parameters which need to be estimated. Although model-based small-area estimators are usually based on random-effects models, the assumption of fixed effects is at face value more appropriate.Model-based estimators are justified by the assumption of random (interchangeable) area effects; in practice, however, areas are not interchangeable. In the present paper we empirically assess the quality of several small-area estimators in the setting in which the area effects are treated as fixed. We consider two settings: one that draws samples from a theoretical population, and another that draws samples from an empirical population of a labor force register maintained by the National Institute of Social Security (NISS) of Catalonia. We distinguish two types of composite estimators: a) those that use weights that involve area specific estimates of bias and variance; and, b) those that use weights that involve a common variance and a common squared bias estimate for all the areas. We assess their precision and discuss alternatives to optimizing composite estimation in applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper theoretically and empirically documents a puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, either sticky wages or match-specific productivity shocks can improve the model's performance by making the firm's flow of surplus more procyclical, which makes hiring more procyclical too.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many dynamic revenue management models divide the sale period into a finite number of periods T and assume, invoking a fine-enough grid of time, that each period sees at most one booking request. These Poisson-type assumptions restrict the variability of the demand in the model, but researchers and practitioners were willing to overlook this for the benefit of tractability of the models. In this paper, we criticize this model from another angle. Estimating the discrete finite-period model poses problems of indeterminacy and non-robustness: Arbitrarily fixing T leads to arbitrary control values and on the other hand estimating T from data adds an additional layer of indeterminacy. To counter this, we first propose an alternate finite-population model that avoids this problem of fixing T and allows a wider range of demand distributions, while retaining the useful marginal-value properties of the finite-period model. The finite-population model still requires jointly estimating market size and the parameters of the customer purchase model without observing no-purchases. Estimation of market-size when no-purchases are unobservable has rarely been attempted in the marketing or revenue management literature. Indeed, we point out that it is akin to the classical statistical problem of estimating the parameters of a binomial distribution with unknown population size and success probability, and hence likely to be challenging. However, when the purchase probabilities are given by a functional form such as a multinomial-logit model, we propose an estimation heuristic that exploits the specification of the functional form, the variety of the offer sets in a typical RM setting, and qualitative knowledge of arrival rates. Finally we perform simulations to show that the estimator is very promising in obtaining unbiased estimates of population size and the model parameters.