124 resultados para Optimal switch allocation
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
The goal of this paper is to present an optimal resource allocation model for the regional allocation of public service inputs. Theproposed solution leads to maximise the relative public service availability in regions located below the best availability frontier, subject to exogenous budget restrictions and equality ofaccess for equal need criteria (equity-based notion of regional needs). The construction of non-parametric deficit indicators is proposed for public service availability by a novel application of Data Envelopment Analysis (DEA) models, whose results offer advantages for the evaluation and improvement of decentralised public resource allocation systems. The method introduced in this paper has relevance as a resource allocation guide for the majority of services centrally funded by the public sector in a given country, such as health care, basic and higher education, citizen safety, justice, transportation, environmental protection, leisure, culture, housing and city planning, etc.
Resumo:
We consider one-seller assignment markets with multi-unit demands and prove that the associated game is buyers-submodular. Therefore the core is non-empty and it has a lattice structure which contains the allocation where every buyer receives his marginal contribution. We prove that in this kind of market, every pairwise-stable outcome is associated to a competitive equilibrium and viceversa. We study conditions under which the buyers-optimal and the seller-optimal core allocations are competitive equilibrium payoff vectors. Moreover, we characterize the markets for which the core coincidences with the set of competitive equilibria payoff vectors. When agents behave strategically, we introduce a procedure that implements the buyers-optimal core allocation as the unique subgame perfect Nash equilibrium outcome.
Resumo:
How should an equity-motivated policy-marker allocate public capital (infrastructure) across regions. Should it aim at reducing interregional differences in per capita output, or at maximizing total output? Such a normative question is examined in a model where the policy-marker is exclusively concerned about personal inequality and has access to two policy instruments. (i) a personal tax-transfer system (taxation is distortionary), and (ii) the regional allocation of public investment. I show that the case for public investment as a significant instrument for interpersonal redistribution is rather weak. In the most favorable case, when the tax code is constrained to be uniform across regions, it is optimal to distort the allocation of public investment in favor of the poor regions, but only to a limited extent. The reason is that poor individuals are relatively more sensitive to public trans fers, which are maximized by allocating public investment efficiently. If! the tax code can vary across regions then the optimal policy may involve an allocation of public investment distorted in favor of the rich regions.
Resumo:
There are many factors that influence the day-ahead market bidding strategies of a generation company (GenCo) in the current energy market framework. Environmental policy issues have become more and more important for fossil-fuelled power plants and they have to be considered in their management, giving rise to emission limitations. This work allows to investigate the influence of both the allowances and emission reduction plan, and the incorporation of the derivatives medium-term commitments in the optimal generation bidding strategy to the day-ahead electricity market. Two different technologies have been considered: the coal thermal units, high-emission technology, and the combined cycle gas turbine units, low-emission technology. The Iberian Electricity Market and the Spanish National Emissions and Allocation Plans are the framework to deal with the environmental issues in the day-ahead market bidding strategies. To address emission limitations, some of the standard risk management methodologies developed for financial markets, such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), have been extended. This study offers to electricity generation utilities a mathematical model to determinate the individual optimal generation bid to the wholesale electricity market, for each one of their generation units that maximizes the long-run profits of the utility abiding by the Iberian Electricity Market rules, the environmental restrictions set by the EU Emission Trading Scheme, as well as the restrictions set by the Spanish National Emissions Reduction Plan. The economic implications for a GenCo of including the environmental restrictions of these National Plans are analyzed and the most remarkable results will be presented.
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid (whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then the problem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
The earning structure in science is known to be flat relative to the one in the private sector, which could cause a brain drain toward the private sector. In this paper, we assume that agents value both money and fame and study the role of the institution of science in the allocation of talent between the science sector and the private sector. Following works on the Sociology of Science, we model the institution of science as a mechanism distributing fame (i.e. peer recognition). We show that since the intrinsic performance is less noisy signal of talent in the science sector than in the private sector, a good institution of science can mitigate the brain drain. We also find that providing extra monetary incentives through the market might undermine the incentives provided by the institution and thereby worsen the brain drain. Finally, we study the optimal balance between monetary and non-monetary incentives in science.
Resumo:
This paper studies monetary and fiscal policy interactions in a two country model, where taxes on firms sales are optimally chosen and the monetary policy is set cooperatively.It turns out that in a two country setting non-cooperative fiscal policy makers have an incentive to change taxes on sales depending on shocks realizations in order to reduce output production. Therefore whether the fiscal policy is set cooperatively or not matters for optimal monetary policy decisions. Indeed, as already shown in the literature, the cooperative monetary policy maker implements the flexible price allocation only when special conditions on the value of the distortions underlying the economy are met. However, if non-cooperative fiscal policy makers set the taxes on firms sales depending on shocks realizations, these conditions cannot be satisfied; conversely, when fiscal policy is cooperative, these conditions are fulfilled. We conclude that whether implementing the flexible price allocation is optimal or not depends on the fiscal policy regime.
Resumo:
We present a polyhedral framework for establishing general structural properties on optimal solutions of stochastic scheduling problems, where multiple job classes vie for service resources: the existence of an optimal priority policy in a given family, characterized by a greedoid(whose feasible class subsets may receive higher priority), where optimal priorities are determined by class-ranking indices, under restricted linear performance objectives (partial indexability). This framework extends that of Bertsimas and Niño-Mora (1996), which explained the optimality of priority-index policies under all linear objectives (general indexability). We show that, if performance measures satisfy partial conservation laws (with respect to the greedoid), which extend previous generalized conservation laws, then theproblem admits a strong LP relaxation over a so-called extended greedoid polytope, which has strong structural and algorithmic properties. We present an adaptive-greedy algorithm (which extends Klimov's) taking as input the linear objective coefficients, which (1) determines whether the optimal LP solution is achievable by a policy in the given family; and (2) if so, computes a set of class-ranking indices that characterize optimal priority policies in the family. In the special case of project scheduling, we show that, under additional conditions, the optimal indices can be computed separately for each project (index decomposition). We further apply the framework to the important restless bandit model (two-action Markov decision chains), obtaining new index policies, that extend Whittle's (1988), and simple sufficient conditions for their validity. These results highlight the power of polyhedral methods (the so-called achievable region approach) in dynamic and stochastic optimization.
Resumo:
The earning structure in science is known to be flat relative to the one in theprivate sector, which could cause a brain drain toward the private sector. In thispaper, we assume that agents value both money and fame and study the role ofthe institution of science in the allocation of talent between the science sector andthe private sector. Following works on the Sociology of Science, we model theinstitution of science as a mechanism distributing fame (i.e. peer recognition). Weshow that since the intrinsic performance is less noisy signal of talent in the sciencesector than in the private sector, a good institution of science can mitigate thebrain drain. We also find that providing extra monetary incentives through themarket might undermine the incentives provided by the institution and therebyworsen the brain drain. Finally, we study the optimal balance between monetaryand non-monetary incentives in science.
Resumo:
Recent developments in optical communications have allowed simpler optical devices to improve network resource utilization. As such, we propose adding a lambda-monitoring device to a wavelength-routing switch (WRS) allowing better performance when traffic is routed and groomed. This device may allow a WRS to aggregate traffic over optical routes without incurring in optical-electrical-optical conversion for the existing traffic. In other words, optical routes can be taken partially to route demands creating a sort of "lighttours". In this paper, we compare the number of OEO conversions needed to route a complete given traffic matrix using either lighttours or lightpaths
Resumo:
This paper aims at assessing the optimal behavior of a firm facing stochastic costs of production. In an imperfectly competitive setting, we evaluate to what extent a firm may decide to locate part of its production in other markets different from which it is actually settled. This decision is taken in a stochastic environment. Portfolio theory is used to derive the optimal solution for the intertemporal profit maximization problem. In such a framework, splitting production between different locations may be optimal when a firm is able to charge different prices in the different local markets.
Resumo:
We consider the allocation of a finite number of indivisible objects to the same number of agents according to an exogenously given queue. We assume that the agents collaborate in order to achieve an efficient outcome for society. We allow for side-payments and provide a method for obtaining stable outcomes.
Resumo:
In a market where firms with different characteristics decide upon both the level of emissions and their reports, we study the optimal audit policy for an enforcement agency whose objective is to minimize the level of emissions. We show that it is optimal to devote the resources primarily to the easiest-to-monitor firms and to those firms that value pollution the less. Moreover, unless the budget for monitoring is very large, there are always firms that do not comply with the environmental objective and others that do comply; but all of them evade the environmental taxes.
Resumo:
We analyze the optimal technology policy to solve a free-riding problem between the members of a RJV. We assume that when intervening the Government suffers an additional adverse selection problem because it is not able to distinguish the value of the potential innovation. Although subsidies and monitoring may be equivalent policy tools to solve firms' free-riding problem, they imply different social losses if the Government is not able to perfectly distinguish the value of the potential innovation. The supremacy of monitoring tools over subsidies is proved to depend on which type of information the Government is able to obtain about firms' R&D performance.
Resumo:
We study a simple model of assigning indivisible objects (e.g., houses, jobs, offices, etc.) to agents. Each agent receives at most one object and monetary compensations are not possible. We completely describe all rules satisfying efficiency and resource-monotonicity. The characterized rules assign the objects in a sequence of steps such that at each step there is either a dictator or two agents "trade" objects from their hierarchically specified "endowments."