8 resultados para O-antigen Ligase

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously reported that A. hydrophila GalU mutants were still able to produce UDP-glucose introduced as a glucose residue in their lipopolysaccharide core. In this study, we found the unique origin of this UDP-glucose from a branched α-glucan surface polysaccharide. This glucan, surface attached through the O-antigen ligase (WaaL), is common to the mesophilic Aeromonas strains tested. The Aeromonas glucan is produced by the action of the glycogen synthase (GlgA) and the UDP-Glc pyrophosphorylase (GlgC), the latter wrongly indicated as an ADP-Glc pyrophosphorylase in the Aeromonas genomes available. The Aeromonas glycogen synthase is able to react with UDP or ADP-glucose, which is not the case of E. coli glycogen synthase only reacting with ADP-glucose. The Aeromonas surface glucan has a role enhancing biofilm formation. Finally, for the first time to our knowledge, a clear preference on behalf of bacterial survival and pathogenesis is observed when choosing to produce one or other surface saccharide molecules to produce (lipopolysaccharide core or glucan).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projecte de recerca elaborat a partir d’una estada al Institut Gustave-Roussy, França, entre febrer i març del 2007. L'objectiu principal del projecte consisteix en estudiar la interacció dels exosomes , obtinguts a partir d'un model in vitro com són les cél•lules dendrítiques derivades de monòcits, amb els subtipus de cel•lules dendrítiques mieloides i plasmacitoides, valorant la seva capacitat de captació i evaluant els canvis fenotípics i funcionals per part de les cèl•lules diana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Max Planck Institut of Molecular Phisiology, Germany, from 2006 to 2008.The work carried out during this postdoctoral stage was focused on two different projects. Firstly, identification of D-Ala D-Ala Inhibitors and the development of new synthethic approaches to obtain lipidated peptides and proteins and the use of these lipidated proteins in biological and biophysical studies. In the first project, new D-Ala D-Ala inhibitors were identified by using structural alignments of the ATP binding sites of the bacterial ligase DDl and protein and lipid kinases in complex with ATP analogs. We tested a series of commercially available kinase inhibitors and found LFM-A13 and Tyrphostine derivatives to inhibit DDl enzyme activity. Based on the initial screening results we synthesized a series of malononitrilamide and salicylamide derivatives and were able to confirm the validity of these scaffolds as inhibitors of DDl. From this investigation we gained a better understanding of the structural requirements and limitations necessary for the preparation of ATP competitive DDl inhibitors. The compounds in this study may serve as starting points for the development of bi-substrate inhibitors that incorporate both, an ATP competitive and a substrate competitive moiety. Bisubstrate inhibitors that block the ATP and D-Ala binding sites should exhibit enhanced selectivity and potency profiles by preferentially inhibiting DDl over kinases. In the second project, an optimized synthesis for tha alkylation of cysteins using the thiol ene reaction was establisehd. This new protocol allowed us to obtain large amounts of hexadecylated cysteine that was required for the synthesis of differently lipidated peptides. Afterwards the synthesis of various N-ras peptides bearing different lipid anchors was performed and the peptides were ligated to a truncated N-ras protein. The influence of this differently lipidated N-ras proteins on the partioning and association of N-Ras in model membrane subdomains was studied using Atomic Force Microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Cell Biology and Biophysics Unit from the National Institutes of Health, from 2010 to 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the efficacy of endorectal Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spetroscopic Imaging (MRSI) combined with total prostate-specific antigen (tPSA) and free prostate-specific antigen (fPSA) in selecting candidates for biopsy. Subjects and Methods: 246 patients with elevated tPSA (median: 7.81 ng/ml) underwent endorectal MRI and MRSI before Transrectal Ultrasound (TRUS) biopsy (10 peripheral + 2 central cores); patients with positive biopsies were treated with radical intention; those with negative biopsies were followed up and underwent MRSI before each additional biopsy if tPSA rose persistently. Mean follow-up: 27.6 months. We compared MRI, MRSI, tPSA, and fPSA with histopathology by sextant and determined the association between the Gleason score and MRI and MRSI. We determined the most accurate combination to detect prostate cancer (PCa) using receiver operating curves; we estimated the odds ratios (OR) and calculated sensitivity, specificity, and positive and negative predictive values. Results: No difference in tPSA was found between patients with and without PCa (p = 0.551). In the peripheral zone, the risk of PCa increased with MRSI grade; patients with high-grade MRSI had the greatest risk of PCa over time (OR = 328.6); the model including MRI, MRSI, tPSA, and fPSA was more accurate (Area under Curve: AUC = 95.7%) than MRI alone (AUC = 85.1%) or fPSA alone (AUC = 78.1%), but not than MRSI alone (94.5%). In the transitional zone, the model was less accurate (AUC = 84.4%). The association (p = 0.005) between MRSI and Gleason score was significant in both zones. Conclusions: MRSI is useful in patients with elevated tPSA. High-grade MRSI lesions call for repeated biopsies. Men with negative MRSI may forgo further biopsies because a significantly high Gleason lesion is very unlikely

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) enzyme catalyzes the major rate-limiting step of the mevalonic acid (MVA) pathway from which sterols and other isoprenoids are synthesized. In contrast with our extensive knowledge of the regulation of HMGR in yeast and animals, little is known about this process in plants. To identify regulatory components of the MVA pathway in plants, we performed a genetic screen for second-site suppressor mutations of the Arabidopsis thaliana highly drought-sensitive drought hypersensitive2 (dry2) mutant that shows decreased squalene epoxidase activity. We show that mutations in SUPPRESSOR OF DRY2 DEFECTS1 (SUD1) gene recover most developmental defects in dry2 through changes in HMGR activity. SUD1 encodes a putative E3 ubiquitin ligase that shows sequence and structural similarity to yeast Degradation of a factor (Doa10) and human TEB4, components of the endoplasmic reticulum-associated degradation C (ERAD-C) pathway. While in yeast and animals, the alternative ERAD-L/ERAD-M pathway regulates HMGR activity by controlling protein stability, SUD1 regulates HMGR activity without apparent changes in protein content. These results highlight similarities, as well as important mechanistic differences, among the components involved in HMGR regulation in plants, yeast, and animals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Plesiomonas shigelloides 302-73 strain (serotype O1) wb gene cluster encodes 15 proteins which are consistent with the chemical structure of the O1-antigen lypopolysaccharide (LPS) previously described for this strain. The P. shigelloides O1-antigen LPS export uses the Wzy-dependent pathway as correspond to heteropolysaccharides structures. By the isolation of two mutants lacking this O1-antigen LPS, we could establish that the presence of the O1-antigen LPS is crucial for to survive in serum mainly to become resistant to complement. Also, it is an important factor in the bacterial adhesion and invasion to some eukaryotic cells, and in the ability to form biofilms. This is the first report on the genetics from a P. shigelloides O-antigen LPS cluster (wb) not shared by Shigella like P. shigelloides O17, the only one reported until now.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HERC gene family encodes proteins with two characteristic domains: HECT and RCC1-like. Proteins with HECT domain shave been described to function as ubiquitin ligases, and those that contain RCC1-like domains have been reported to function as GTPases regulators. These two activities are essential in a number of important cellular processes such as cell cycle, cell signaling, and membrane trafficking. Mutations affecting these domains have been found associated with retinitis pigmentosa, amyotrophic lateral sclerosis, and cancer. In humans, six HERC genes have been reported which encode two subgroups of HERC proteins: large (HERC1-2) and small (HERC3-6). The giant HERC1 protein was the first to be identified. It has been involved in membrane trafficking and cell proliferation/growth through its interactions with clathrin, M2-pyruvate kinase, and TSC2 proteins. Mutations affecting other members of the HERC family have been found to be associated with sterility and growth retardation. Here, we report the characterization of a recessive mutation named tambaleante, which causes progressive Purkinje cell degeneration leading to severe ataxia with reduced growth and lifespan in homozygous mice aged over two months. We mapped this mutation in mouse chromosome 9 and then performed positional cloning. We found a GuA transition at position 1448, causing a Gly to Glu substitution (Gly483Glu) in the highly conserved N- terminal RCC1-like domain of the HERC1 protein. Successful transgenic rescue, with either a mouse BAC containing the normal copy of Herc1 or with the human HERC1 cDNA, validated our findings. Histological and biochemical studies revealed extensive autophagy associated with an increase of the mutant protein level and a decrease of mTOR activity. Our observations concerning this first mutation in the Herc1 gene contribute to the functional annotation of the encoded E3 ubiquitin ligase and underline the crucial and unexpected role of this protein in Purkinje cell physiology.