44 resultados para Numerical renormalization-group
em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain
Resumo:
We obtain the next-to-next-to-leading-logarithmic renormalization-group improvement of the spectrum of hydrogenlike atoms with massless fermions by using potential NRQED. These results can also be applied to the computation of the muonic hydrogen spectrum where we are able to reproduce some known double logarithms at O(m¿s6). We compare with other formalisms dealing with logarithmic resummation available in the literature.
Resumo:
In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approached using the language of renormalization-group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of its differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.
Resumo:
A stochastic nonlinear partial differential equation is constructed for two different models exhibiting self-organized criticality: the Bak-Tang-Wiesenfeld (BTW) sandpile model [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] and the Zhang model [Phys. Rev. Lett. 63, 470 (1989)]. The dynamic renormalization group (DRG) enables one to compute the critical exponents. However, the nontrivial stable fixed point of the DRG transformation is unreachable for the original parameters of the models. We introduce an alternative regularization of the step function involved in the threshold condition, which breaks the symmetry of the BTW model. Although the symmetry properties of the two models are different, it is shown that they both belong to the same universality class. In this case the DRG procedure leads to a symmetric behavior for both models, restoring the broken symmetry, and makes accessible the nontrivial fixed point. This technique could also be applied to other problems with threshold dynamics.
Resumo:
Critical exponents of the infinitely slowly driven Zhang model of self-organized criticality are computed for d=2 and 3, with particular emphasis devoted to the various roughening exponents. Besides confirming recent estimates of some exponents, new quantities are monitored, and their critical exponents computed. Among other results, it is shown that the three-dimensional exponents do not coincide with the Bak-Tang-Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A 38, 364 (1988)] (Abelian) model, and that the dynamical exponent as computed from the correlation length and from the roughness of the energy profile do not necessarily coincide, as is usually implicitly assumed. An explanation for this is provided. The possibility of comparing these results with those obtained from renormalization group arguments is also briefly addressed.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
Let F be a free group of rank at least three. We show that some retracts of F previously studied by Martino-Ventura are not equal to the fixed subgroup of any group of automorphisms of F. This shows that, in F, there exist subgroups that are equal to the fixed subgroup of some set of endomorphisms but are not equal to the fixed subgroup of any set of automorphisms. Moreover, we determine the Galois monoids of these retracts, where, by the Galois monoid of a subgroup H of F, we mean the monoid consisting of all endomorphisms of F that fix H.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Here we describe the results of some computational explorations in Thompson's group F. We describe experiments to estimate the cogrowth of F with respect to its standard finite generating set, designed to address the subtle and difficult question whether or not Thompson's group is amenable. We also describe experiments to estimate the exponential growth rate of F and the rate of escape of symmetric random walks with respect to the standard generating set.
Resumo:
We discuss metric and combinatorial properties of Thompson's group T, such as the normal forms for elements and uniqueness of tree pair diagrams. We relate these properties to those of Thompson's group F when possible, and highlight combinatorial differences between the two groups. We define a set of unique normal forms for elements of T arising from minimal factorizations of elements into convenient pieces. We show that the number of carets in a reduced representative of T estimates the word length, that F is undistorted in T, and that cyclic subgroups of T are undistorted. We show that every element of T has a power which is conjugate to an element of F and describe how to recognize torsion elements in T.
Resumo:
For the many-to-one matching model in which firms have substitutable and quota q-separable preferences over subsets of workers we show that the workers-optimal stable mechanism is group strategy-proof for the workers. In order to prove this result, we also show that under this domain of preferences (which contains the domain of responsive preferences of the college admissions problem) the workers-optimal stable matching is weakly Pareto optimal for the workers and the Blocking Lemma holds as well. We exhibit an example showing that none of these three results remain true if the preferences of firms are substitutable but not quota q-separable.
Resumo:
This paper analyzes secession and group formation in a general model of contest inspired by Esteban and Ray (1999). This model encompasses as special cases rent seeking contests and policy conflicts, where agents lobby over the choice of a policy in a one-dimensional policy space. We show that in both models the grand coalition is the efficient coalition structure and agents are always better off in the grand coalition than in a symmetric coalition structure. Individual agents (in the rent seeking contest) and extremists (in the policy conflict) only have an incentive to secede when they anticipate that their secession will not be followed by additional secessions. Incentives to secede are lower when agents cooperate inside groups. The grand coalition emerges as the unique subgame perfect equilibrium outcome of a sequential game of coalition formation in rent seeking contests.