33 resultados para Network analysis (Planning)

em Consorci de Serveis Universitaris de Catalunya (CSUC), Spain


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Social interactions are a very important component in people"s lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Times" Blogging Heads opinion blog. The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The links" weights are a measure of the"influence" a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HEMOLIA (a project under European community’s 7th framework programme) is a new generation Anti-Money Laundering (AML) intelligent multi-agent alert and investigation system which in addition to the traditional financial data makes extensive use of modern society’s huge telecom data source, thereby opening up a new dimension of capabilities to all Money Laundering fighters (FIUs, LEAs) and Financial Institutes (Banks, Insurance Companies, etc.). This Master-Thesis project is done at AIA, one of the partners for the HEMOLIA project in Barcelona. The objective of this thesis is to find the clusters in a network drawn by using the financial data. An extensive literature survey has been carried out and several standard algorithms related to networks have been studied and implemented. The clustering problem is a NP-hard problem and several algorithms like K-Means and Hierarchical clustering are being implemented for studying several problems relating to sociology, evolution, anthropology etc. However, these algorithms have certain drawbacks which make them very difficult to implement. The thesis suggests (a) a possible improvement to the K-Means algorithm, (b) a novel approach to the clustering problem using the Genetic Algorithms and (c) a new algorithm for finding the cluster of a node using the Genetic Algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. This paper studies the situation of research on Catalan literature between 1976 and 2003 by carrying out a bibliometric and social network analysis of PhD theses defended in Spain. It has a dual aim: to present interesting results for the discipline and to demonstrate the methodological efficacy of scientometric tools in the humanities, a field in which they are often neglected due to the difficulty of gathering data. Method. The analysis was performed on 151 records obtained from the TESEO database of PhD theses. The quantitative estimates include the use of the UCINET and Pajek software packages. Authority control was performed on the records. Analysis. Descriptive statistics were used to describe the sample and the distribution of responses to each question. Sex differences on key questions were analysed using the Chi-squared test. Results. The value of the figures obtained is demonstrated. The information obtained on the topic and the periods studied in the theses, and on the actors involved (doctoral students, thesis supervisors and members of defence committees), provide important insights into the mechanisms of humanities disciplines. The main research tendencies of Catalan literature are identified. It is observed that the composition of members of the thesis defence committees follows Lotka's Law. Conclusions. Bibliometric analysis and social network analysis may be especially useful in the humanities and in other fields which are lacking in scientometric data in comparison with the experimental sciences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractBACKGROUND: Scientists have been trying to understand the molecular mechanisms of diseases to design preventive and therapeutic strategies for a long time. For some diseases, it has become evident that it is not enough to obtain a catalogue of the disease-related genes but to uncover how disruptions of molecular networks in the cell give rise to disease phenotypes. Moreover, with the unprecedented wealth of information available, even obtaining such catalogue is extremely difficult.PRINCIPAL FINDINGS: We developed a comprehensive gene-disease association database by integrating associations from several sources that cover different biomedical aspects of diseases. In particular, we focus on the current knowledge of human genetic diseases including mendelian, complex and environmental diseases. To assess the concept of modularity of human diseases, we performed a systematic study of the emergent properties of human gene-disease networks by means of network topology and functional annotation analysis. The results indicate a highly shared genetic origin of human diseases and show that for most diseases, including mendelian, complex and environmental diseases, functional modules exist. Moreover, a core set of biological pathways is found to be associated with most human diseases. We obtained similar results when studying clusters of diseases, suggesting that related diseases might arise due to dysfunction of common biological processes in the cell.CONCLUSIONS: For the first time, we include mendelian, complex and environmental diseases in an integrated gene-disease association database and show that the concept of modularity applies for all of them. We furthermore provide a functional analysis of disease-related modules providing important new biological insights, which might not be discovered when considering each of the gene-disease association repositories independently. Hence, we present a suitable framework for the study of how genetic and environmental factors, such as drugs, contribute to diseases.AVAILABILITY: The gene-disease networks used in this study and part of the analysis are available at http://ibi.imim.es/DisGeNET/DisGeNETweb.html#Download

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This master thesis presents a research on the analysis of film tourism stakeholders in Catalonia applying the network analysis approach. The research aims to provide an analysis of the relations between local tourism stakeholders with local film offices through their websites. Therefore, the development of the present work involved the review of literature on the themes of film tourism and network analysis. Then the main stakeholders of film and tourism of Catalonia were identified and their websites analyzed. The measures indicators for network analysis such as centrality, closeness and betweenness degree have been applied on the analysis of the websites to determine the extent of the relations of film and tourism stakeholders in Catalonia. Results and conclusions are presented on the referred sections

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The final year project came to us as an opportunity to get involved in a topic which has appeared to be attractive during the learning process of majoring in economics: statistics and its application to the analysis of economic data, i.e. econometrics.Moreover, the combination of econometrics and computer science is a very hot topic nowadays, given the Information Technologies boom in the last decades and the consequent exponential increase in the amount of data collected and stored day by day. Data analysts able to deal with Big Data and to find useful results from it are verydemanded in these days and, according to our understanding, the work they do, although sometimes controversial in terms of ethics, is a clear source of value added both for private corporations and the public sector. For these reasons, the essence of this project is the study of a statistical instrument valid for the analysis of large datasets which is directly related to computer science: Partial Correlation Networks.The structure of the project has been determined by our objectives through the development of it. At first, the characteristics of the studied instrument are explained, from the basic ideas up to the features of the model behind it, with the final goal of presenting SPACE model as a tool for estimating interconnections in between elements in large data sets. Afterwards, an illustrated simulation is performed in order to show the power and efficiency of the model presented. And at last, the model is put into practice by analyzing a relatively large data set of real world data, with the objective of assessing whether the proposed statistical instrument is valid and useful when applied to a real multivariate time series. In short, our main goals are to present the model and evaluate if Partial Correlation Network Analysis is an effective, useful instrument and allows finding valuable results from Big Data.As a result, the findings all along this project suggest the Partial Correlation Estimation by Joint Sparse Regression Models approach presented by Peng et al. (2009) to work well under the assumption of sparsity of data. Moreover, partial correlation networks are shown to be a very valid tool to represent cross-sectional interconnections in between elements in large data sets.The scope of this project is however limited, as there are some sections in which deeper analysis would have been appropriate. Considering intertemporal connections in between elements, the choice of the tuning parameter lambda, or a deeper analysis of the results in the real data application are examples of aspects in which this project could be completed.To sum up, the analyzed statistical tool has been proved to be a very useful instrument to find relationships that connect the elements present in a large data set. And after all, partial correlation networks allow the owner of this set to observe and analyze the existing linkages that could have been omitted otherwise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model of the voltage drop which arises in on-chip power distribution networks is used to compare the maximum voltage drop in the case of different geometric arrangements of the pads supplying power to the chip. These include the square or Manhattan power pad arrangement, which currently predominates, as well as equilateral triangular and hexagonal arrangements. In agreement with the findings in the literature and with physical and SPICE models, the equilateral triangular power pad arrangement is found to minimize the maximum voltage drop. This headline finding is a consequence of relatively simple formulas for the voltage drop, with explicit error bounds, which are established using complex analysis techniques, and elliptic functions in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical model of the voltage drop which arises in on-chip power distribution networks is used to compare the maximum voltage drop in the case of different geometric arrangements of the pads supplying power to the chip. These include the square or Manhattan power pad arrangement, which currently predominates, as well as equilateral triangular and hexagonal arrangements. In agreement with the findings in the literature and with physical and SPICE models, the equilateral triangular power pad arrangement is found to minimize the maximum voltage drop. This headline finding is a consequence of relatively simple formulas for the voltage drop, with explicit error bounds, which are established using complex analysis techniques, and elliptic functions in particular.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of biomarkers of vascular cognitive impairment is urgent for its early diagnosis. The aim of this study was to detect and monitor changes in brain structure and connectivity, and to correlate them with the decline in executive function. We examined the feasibility of early diagnostic magnetic resonance imaging (MRI) to predict cognitive impairment before onset in an animal model of chronic hypertension: Spontaneously Hypertensive Rats. Cognitive performance was tested in an operant conditioning paradigm that evaluated learning, memory, and behavioral flexibility skills. Behavioral tests were coupled with longitudinal diffusion weighted imaging acquired with 126 diffusion gradient directions and 0.3 mm(3) isometric resolution at 10, 14, 18, 22, 26, and 40 weeks after birth. Diffusion weighted imaging was analyzed in two different ways, by regional characterization of diffusion tensor imaging (DTI) indices, and by assessing changes in structural brain network organization based on Q-Ball tractography. Already at the first evaluated times, DTI scalar maps revealed significant differences in many regions, suggesting loss of integrity in white and gray matter of spontaneously hypertensive rats when compared to normotensive control rats. In addition, graph theory analysis of the structural brain network demonstrated a significant decrease of hierarchical modularity, global and local efficacy, with predictive value as shown by regional three-fold cross validation study. Moreover, these decreases were significantly correlated with the behavioral performance deficits observed at subsequent time points, suggesting that the diffusion weighted imaging and connectivity studies can unravel neuroimaging alterations even overt signs of cognitive impairment become apparent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detecció del tipus de protocols que tenim en la nostra xarxa per així poder fer un anàlisis i estudiar les possiblesanomalies que pugui patir la xarxa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work proposes novel network analysis techniques for multivariate time series.We define the network of a multivariate time series as a graph where verticesdenote the components of the process and edges denote non zero long run partialcorrelations. We then introduce a two step LASSO procedure, called NETS, toestimate high dimensional sparse Long Run Partial Correlation networks. This approachis based on a VAR approximation of the process and allows to decomposethe long run linkages into the contribution of the dynamic and contemporaneousdependence relations of the system. The large sample properties of the estimatorare analysed and we establish conditions for consistent selection and estimation ofthe non zero long run partial correlations. The methodology is illustrated with anapplication to a panel of U.S. bluechips.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a new method to analyze timeinvariant linear networks allowing the existence of inconsistent initial conditions. This method is based on the use of distributions and state equations. Any time-invariant linear network can be analyzed. The network can involve any kind of pure or controlled sources. Also, the transferences of energy that occur at t=O are determined, and the concept of connection energy is introduced. The algorithms are easily implemented in a computer program.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

El present treball de fi de carrera es planteja en base a l'anàlisi, planificació i desenvolupament d'una aplicació web basada en el model Java EE i que permetrà als usuaris del sistema la creació de col leccions digitals de fotografies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aquest treball de final de carrera documenta les diferents fases d'anàlisi, planificació i implementació del programari ERP a Publimarket, una empresa del ram editorial que fonamenta la seva activitat econòmica en la venda de diverses publicacions (diaris i revistes) i en la publicitat que s'hi insereix.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Es va instal.lar un analitzador CM4000 a la Facultat de Ciències per tal de poder enregistrar en temps real les incidències en la xarxa elèctrica que s'estaven produint (caigudes de tensió i problemes amb els harmònics). El projecte vol monotoritzar la qualitat dels registres d'aquest analitzador que queden enregistrats a la base de dades Power Server. A partir d'aquestes dades es realitza un estudi sobre la freqüència de les incidències, buscant el patró dels dies i hores en què les incidències són màximes